These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22511879)

  • 1. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo.
    Kaplan CD; Jin H; Zhang IL; Belyanin A
    PLoS Genet; 2012; 8(4):e1002627. PubMed ID: 22511879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships of RNA polymerase II genetic interactors to transcription start site usage defects and growth in Saccharomyces cerevisiae.
    Jin H; Kaplan CD
    G3 (Bethesda); 2014 Nov; 5(1):21-33. PubMed ID: 25380729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation.
    Kuehner JN; Brow DA
    Mol Cell; 2008 Jul; 31(2):201-11. PubMed ID: 18657503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.
    Kaplan CD; Larsson KM; Kornberg RD
    Mol Cell; 2008 Jun; 30(5):547-56. PubMed ID: 18538653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in
    Zhao T; Vvedenskaya IO; Lai WK; Basu S; Pugh BF; Nickels BE; Kaplan CD
    Elife; 2021 Oct; 10():. PubMed ID: 34652274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop.
    Qiu C; Erinne OC; Dave JM; Cui P; Jin H; Muthukrishnan N; Tang LK; Babu SG; Lam KC; Vandeventer PJ; Strohner R; Van den Brulle J; Sze SH; Kaplan CD
    PLoS Genet; 2016 Nov; 12(11):e1006321. PubMed ID: 27898685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.
    Kireeva ML; Nedialkov YA; Cremona GH; Purtov YA; Lubkowska L; Malagon F; Burton ZF; Strathern JN; Kashlev M
    Mol Cell; 2008 Jun; 30(5):557-66. PubMed ID: 18538654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Polymerase II Trigger Loop Mobility: INDIRECT EFFECTS OF Rpb9.
    Kaster BC; Knippa KC; Kaplan CD; Peterson DO
    J Biol Chem; 2016 Jul; 291(28):14883-95. PubMed ID: 27226557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels.
    Zhu Y; Vvedenskaya IO; Sze SH; Nickels BE; Kaplan CD
    Nat Struct Mol Biol; 2024 Jan; 31(1):190-202. PubMed ID: 38177677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II.
    Viktorovskaya OV; Engel KL; French SL; Cui P; Vandeventer PJ; Pavlovic EM; Beyer AL; Kaplan CD; Schneider DA
    Cell Rep; 2013 Sep; 4(5):974-84. PubMed ID: 23994471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues.
    Xu L; Butler KV; Chong J; Wengel J; Kool ET; Wang D
    Nucleic Acids Res; 2014 May; 42(9):5863-70. PubMed ID: 24692664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II.
    Park JH; Ahn SH
    Biochem Biophys Res Commun; 2010 Feb; 392(4):588-92. PubMed ID: 20097157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex.
    Eichner J; Chen HT; Warfield L; Hahn S
    EMBO J; 2010 Feb; 29(4):706-16. PubMed ID: 20033062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae.
    Kaplan CD
    Biochim Biophys Acta; 2013 Jan; 1829(1):39-54. PubMed ID: 23022618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell analysis of IMPDH protein levels during yeast colony growth provides insights into the regulation of GTP synthesis.
    Shand EL; Sweeney K; Sundling KE; McClean MN; Brow DA
    mBio; 2024 Aug; 15(8):e0102124. PubMed ID: 38940616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo.
    Malik I; Qiu C; Snavely T; Kaplan CD
    Nucleic Acids Res; 2017 May; 45(8):4431-4451. PubMed ID: 28119420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations of RNA polymerase II activate key genes of the nucleoside triphosphate biosynthetic pathways.
    Kwapisz M; Wery M; Després D; Ghavi-Helm Y; Soutourina J; Thuriaux P; Lacroute F
    EMBO J; 2008 Sep; 27(18):2411-21. PubMed ID: 18716630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II.
    Fishburn J; Galburt E; Hahn S
    J Biol Chem; 2016 Jun; 291(25):13040-7. PubMed ID: 27129284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes.
    Pearson E; Moore C
    Cell Rep; 2014 Nov; 9(3):821-8. PubMed ID: 25437538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis.
    Wang D; Bushnell DA; Westover KD; Kaplan CD; Kornberg RD
    Cell; 2006 Dec; 127(5):941-54. PubMed ID: 17129781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.