BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 22511948)

  • 1. MicroRNA dysregulation in the spinal cord following traumatic injury.
    Yunta M; Nieto-Díaz M; Esteban FJ; Caballero-López M; Navarro-Ruíz R; Reigada D; Pita-Thomas DW; del Águila A; Muñoz-Galdeano T; Maza RM
    PLoS One; 2012; 7(4):e34534. PubMed ID: 22511948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics.
    Nieto-Diaz M; Esteban FJ; Reigada D; Muñoz-Galdeano T; Yunta M; Caballero-López M; Navarro-Ruiz R; Del Águila A; Maza RM
    Front Cell Neurosci; 2014; 8():53. PubMed ID: 24701199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of the differential expression profile of microRNAs in rats with spinal cord injury treated by electroacupuncture.
    Zhou Z; Li H; Li H; Zhang J; Fu K; Cao C; Deng F; Luo J
    Mol Med Rep; 2020 Aug; 22(2):751-762. PubMed ID: 32468009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatics Analysis of microRNA Time-Course Expression in Brown Rat (Rattus norvegicus): Spinal Cord Injury Self-Repair.
    Liu Y; Han N; Li Q; Li Z
    Spine (Phila Pa 1976); 2016 Jan; 41(2):97-103. PubMed ID: 26641843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered microRNA expression following traumatic spinal cord injury.
    Liu NK; Wang XF; Lu QB; Xu XM
    Exp Neurol; 2009 Oct; 219(2):424-9. PubMed ID: 19576215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion.
    Strickland ER; Woller SA; Garraway SM; Hook MA; Grau JW; Miranda RC
    Front Neural Circuits; 2014; 8():117. PubMed ID: 25278846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between microRNA-20a and microRNA-125b expression and apoptosis and inflammation in experimental spinal cord injury.
    Şaker D; Sencar L; Yılmaz DM; Polat S
    Neurol Res; 2019 Nov; 41(11):991-1000. PubMed ID: 31397222
    [No Abstract]   [Full Text] [Related]  

  • 8. Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury.
    Gu S; Xie R; Liu X; Shou J; Gu W; Che X
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28368292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-92a-3p enhances functional recovery and suppresses apoptosis after spinal cord injury via targeting phosphatase and tensin homolog.
    He S; Wang Z; Li Y; Dong J; Xiang D; Ren L; Guo L; Shu J
    Biosci Rep; 2020 May; 40(5):. PubMed ID: 32297644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. microRNAs in spinal cord injury: potential roles and therapeutic implications.
    Ning B; Gao L; Liu RH; Liu Y; Zhang NS; Chen ZY
    Int J Biol Sci; 2014; 10(9):997-1006. PubMed ID: 25210498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying the role of microRNAs in spinal cord injury.
    Dong J; Lu M; He X; Xu J; Qin J; Cheng Z; Liang B; Wang D; Li H
    Neurol Sci; 2014 Nov; 35(11):1663-71. PubMed ID: 25231644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury.
    Zhu H; Xie R; Liu X; Shou J; Gu W; Gu S; Che X
    Biomed Pharmacother; 2017 Aug; 92():879-887. PubMed ID: 28601045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Signature of MicroRNA Dysregulation in Muscle Paralyzed by Spinal Cord Injury Includes Downregulation of MicroRNAs that Target Myostatin Signaling.
    De Gasperi R; Graham ZA; Harlow LM; Bauman WA; Qin W; Cardozo CP
    PLoS One; 2016; 11(12):e0166189. PubMed ID: 27907012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair.
    Strickland ER; Hook MA; Balaraman S; Huie JR; Grau JW; Miranda RC
    Neuroscience; 2011 Jul; 186():146-60. PubMed ID: 21513774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes.
    Tang Y; Ling ZM; Fu R; Li YQ; Cheng X; Song FH; Luo HX; Zhou LH
    BMC Neurosci; 2014 Jul; 15():92. PubMed ID: 25055855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAP‑1B, PACS‑2 and AHCYL1 are regulated by miR‑34A/B/C and miR‑449 in neuroplasticity following traumatic spinal cord injury in rats: Preliminary explorative results from microarray data.
    Cao H; Zhang Y; Chu Z; Zhao B; Wang H; An L
    Mol Med Rep; 2019 Oct; 20(4):3011-3018. PubMed ID: 31432119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed inflammatory mRNA and protein expression after spinal cord injury.
    Byrnes KR; Washington PM; Knoblach SM; Hoffman E; Faden AI
    J Neuroinflammation; 2011 Oct; 8():130. PubMed ID: 21975064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic analysis of α-synuclein knockdown after T3 spinal cord injury in rats.
    Zeng H; Yu BF; Liu N; Yang YY; Xing HY; Liu XX; Zhou MW
    BMC Genomics; 2019 Nov; 20(1):851. PubMed ID: 31726970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Expression Profiles and Functional Predication of Circular Ribonucleic Acid in Traumatic Spinal Cord Injury of Rats.
    Zhou ZB; Du D; Chen KZ; Deng LF; Niu YL; Zhu L
    J Neurotrauma; 2019 Aug; 36(15):2287-2297. PubMed ID: 30681027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An update on the roles of circular RNAs in spinal cord injury.
    Ma X; Wang X; Ma X; Zhang X; Gong X; Sun R; Wong SH; Chan MTV; Wu WKK
    Mol Neurobiol; 2022 Apr; 59(4):2620-2628. PubMed ID: 35112318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.