These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 22511948)

  • 21. An update on the roles of circular RNAs in spinal cord injury.
    Ma X; Wang X; Ma X; Zhang X; Gong X; Sun R; Wong SH; Chan MTV; Wu WKK
    Mol Neurobiol; 2022 Apr; 59(4):2620-2628. PubMed ID: 35112318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of gene expression in rats with spinal cord injury based on microarray data.
    Chen G; Fang X; Yu M
    Mol Med Rep; 2015 Aug; 12(2):2465-72. PubMed ID: 25936407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-135a-5p reduces P2X
    Reigada D; Calderón-García AÁ; Soto-Catalán M; Nieto-Díaz M; Muñoz-Galdeano T; Del Águila Á; Maza RM
    J Neurochem; 2019 Oct; 151(1):116-130. PubMed ID: 30924927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomarkers mining for spinal cord injury based on integrated multi-transcriptome expression profile data.
    Gong C; Liu L; Shen Y
    J Orthop Surg Res; 2021 Apr; 16(1):267. PubMed ID: 33863336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intravenous delivery of microRNA-133b along with Argonaute-2 enhances spinal cord recovery following cervical contusion in mice.
    Danilov CA; Gu Y; Punj V; Wu Z; Steward O; Schönthal AH; Tahara SM; Hofman FM; Chen TC
    Spine J; 2020 Jul; 20(7):1138-1151. PubMed ID: 32145360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction and analysis of a spinal cord injury competitive endogenous RNA network based on the expression data of long noncoding, micro‑ and messenger RNAs.
    Wang L; Wang B; Liu J; Quan Z
    Mol Med Rep; 2019 Apr; 19(4):3021-3034. PubMed ID: 30816457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats.
    Ding SQ; Chen YQ; Chen J; Wang SN; Duan FX; Shi YJ; Hu JG; Lü HZ
    Genomics; 2020 Nov; 112(6):5086-5100. PubMed ID: 32919018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA-409 promotes recovery of spinal cord injury by regulating ZNF366.
    Lin CA; Duan KY; Wang XW; Zhang ZS
    Eur Rev Med Pharmacol Sci; 2018 Jun; 22(12):3649-3655. PubMed ID: 29949136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in the Expression of miR-34a and its Target Genes Following Spinal Cord Injury In Rats.
    Chen Y; Cao S; Xu P; Han W; Shan T; Pan J; Lin W; Chen X; Wang X
    Med Sci Monit; 2016 Oct; 22():3981-3993. PubMed ID: 27780189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. microRNA-331-3p attenuates neuropathic pain following spinal cord injury via targeting RAP1A.
    Zhang X; Guo H; Xie A; Liao O; Ju F
    J Biol Regul Homeost Agents; 2020; 34(1):25-37. PubMed ID: 32264665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNA‑138‑5p regulates the development of spinal cord injury by targeting SIRT1.
    Chen J; Qin R
    Mol Med Rep; 2020 Jul; 22(1):328-336. PubMed ID: 32319664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model.
    Xu Y; An BY; Xi XB; Li ZW; Li FY
    Brain Res Bull; 2016 Mar; 121():233-40. PubMed ID: 26812136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury.
    Jee MK; Jung JS; Choi JI; Jang JA; Kang KS; Im YB; Kang SK
    Brain; 2012 Apr; 135(Pt 4):1237-52. PubMed ID: 22466292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats.
    Hu J; Zeng L; Huang J; Wang G; Lu H
    Brain Res; 2015 May; 1608():191-202. PubMed ID: 25724143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury.
    Ren XD; Wan CX; Niu YL
    FEBS Open Bio; 2019 Jul; 9(7):1223-1231. PubMed ID: 31050183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Micro RNA and its role in the pathophysiology of spinal cord injury - a further step towards neuroregenerative medicine].
    Quinzaños-Fresnedo J; Sahagún-Olmos RC
    Cir Cir; 2015; 83(5):442-7. PubMed ID: 26162489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice.
    Sabirzhanov B; Matyas J; Coll-Miro M; Yu LL; Faden AI; Stoica BA; Wu J
    Cell Death Dis; 2019 Nov; 10(11):839. PubMed ID: 31685802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA-211-5p attenuates spinal cord injury via targeting of activating transcription factor 6.
    Zhang H; Piao M; Guo M; Meng L; Yu H
    Tissue Cell; 2021 Feb; 68():101459. PubMed ID: 33238217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity.
    De Biase A; Knoblach SM; Di Giovanni S; Fan C; Molon A; Hoffman EP; Faden AI
    Physiol Genomics; 2005 Aug; 22(3):368-81. PubMed ID: 15942019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.