BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22512255)

  • 1. Pharmacological mechanisms underlying switching from the large-scale depolarization wave to segregated activity in the mouse central nervous system.
    Momose-Sato Y; Nakamori T; Sato K
    Eur J Neurosci; 2012 Apr; 35(8):1242-52. PubMed ID: 22512255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous depolarization wave in the mouse embryo: origin and large-scale propagation over the CNS identified with voltage-sensitive dye imaging.
    Momose-Sato Y; Nakamori T; Sato K
    Eur J Neurosci; 2012 Apr; 35(8):1230-41. PubMed ID: 22339904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical imaging of large-scale correlated wave activity in the developing rat CNS.
    Momose-Sato Y; Honda Y; Sasaki H; Sato K
    J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature.
    Momose-Sato Y; Sato K
    Ann N Y Acad Sci; 2013 Mar; 1279():60-70. PubMed ID: 23531003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging of spreading depolarization waves triggered by spinal nerve stimulation in the chick embryo: possible mechanisms for large-scale coactivation of the central nervous system.
    Mochida H; Sato K; Arai Y; Sasaki S; Kamino K; Momose-Sato Y
    Eur J Neurosci; 2001 Sep; 14(5):809-20. PubMed ID: 11576185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous depolarization waves of multiple origins in the embryonic rat CNS.
    Momose-Sato Y; Sato K; Kinoshita M
    Eur J Neurosci; 2007 Feb; 25(4):929-44. PubMed ID: 17331191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an inhibitory interneuronal circuit in the embryonic spinal cord.
    Xu H; Whelan PJ; Wenner P
    J Neurophysiol; 2005 May; 93(5):2922-33. PubMed ID: 15574794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem.
    Momose-Sato Y; Sato K
    Neuroscience; 2017 Dec; 365():33-47. PubMed ID: 28951326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spreading depolarization waves triggered by vagal stimulation in the embryonic chick brain: optical evidence for intercellular communication in the developing central nervous system.
    Momose-Sato Y; Sato K; Mochida H; Yazawa I; Sasaki S; Kamino K
    Neuroscience; 2001; 102(2):245-62. PubMed ID: 11166111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical analysis of depolarization waves in the embryonic brain: a dual network of gap junctions and chemical synapses.
    Momose-Sato Y; Miyakawa N; Mochida H; Sasaki S; Sato K
    J Neurophysiol; 2003 Jan; 89(1):600-14. PubMed ID: 12522205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter.
    Fujii M; Arata A; Kanbara-Kume N; Saito K; Yanagawa Y; Obata K
    Neuroscience; 2007 May; 146(3):1044-52. PubMed ID: 17418495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization waves in the embryonic CNS triggered by multiple sensory inputs and spontaneous activity: optical imaging with a voltage-sensitive dye.
    Momose-Sato Y; Mochida H; Sasaki S; Sato K
    Neuroscience; 2003; 116(2):407-23. PubMed ID: 12559096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of the large-scale depolarization wave in the embryonic chick brain against deprivation of the rhythm generator.
    Momose-Sato Y; Sato K
    Neuroscience; 2014 Apr; 266():186-96. PubMed ID: 24568731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical recording of vagal pathway formation in the embryonic brainstem.
    Momose-Sato Y; Sato K
    Auton Neurosci; 2006 Jun; 126-127():39-49. PubMed ID: 16616702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67.
    Tsunekawa N; Arata A; Obata K
    Eur J Neurosci; 2005 Jan; 21(1):173-8. PubMed ID: 15654854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical survey of neural circuit formation in the embryonic chick vagal pathway.
    Sato K; Miyakawa N; Momose-Sato Y
    Eur J Neurosci; 2004 Mar; 19(5):1217-25. PubMed ID: 15016080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.