These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22512314)

  • 21. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells.
    Hara K; Zhao ZG; Cui Y; Miyauchi M; Miyashita M; Mori S
    Langmuir; 2011 Oct; 27(20):12730-6. PubMed ID: 21942210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-prefabricated nanocrystal mesoporous TiO2-based photoanodes tuned by a layer-by-layer and rapid thermal process.
    Tao J; Sun Y; Ge M; Chen X; Dai N
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):265-9. PubMed ID: 20356244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoreduction of Cr(VI) in wastewater by anodic nanoporous Nb
    Alias N; Hussain Z; Tan WK; Kawamura G; Muto H; Matsuda A; Lockman Z
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60600-60615. PubMed ID: 35426025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs.
    Choi SY; Kim MH; Kwon YU
    Phys Chem Chem Phys; 2012 Mar; 14(10):3576-82. PubMed ID: 22310656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells.
    Koops SE; O'Regan BC; Barnes PR; Durrant JR
    J Am Chem Soc; 2009 Apr; 131(13):4808-18. PubMed ID: 19334776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film.
    Dai G; Zhao L; Li J; Wan L; Hu F; Xu Z; Dong B; Lu H; Wang S; Yu J
    J Colloid Interface Sci; 2012 Jan; 365(1):46-52. PubMed ID: 21962431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization.
    Ohsaki Y; Masaki N; Kitamura T; Wada Y; Okamoto T; Sekino T; Niihara K; Yanagida S
    Phys Chem Chem Phys; 2005 Dec; 7(24):4157-63. PubMed ID: 16474882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Y3Al5O12:Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells.
    Zhu G; Wang X; Li H; Pan L; Sun H; Liu X; Lv T; Sun Z
    Chem Commun (Camb); 2012 Jan; 48(7):958-60. PubMed ID: 22113365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties.
    Ou JZ; Balendhran S; Field MR; McCulloch DG; Zoolfakar AS; Rani RA; Zhuiykov S; O'Mullane AP; Kalantar-Zadeh K
    Nanoscale; 2012 Sep; 4(19):5980-8. PubMed ID: 22906993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties.
    Kim JY; Noh JH; Zhu K; Halverson AF; Neale NR; Park S; Hong KS; Frank AJ
    ACS Nano; 2011 Apr; 5(4):2647-56. PubMed ID: 21395234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.
    Lee WJ; Ramasamy E; Lee DY; Song JS
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1145-9. PubMed ID: 20355903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length.
    Dong Y; Pan K; Tian G; Zhou W; Pan Q; Xie T; Wang D; Fu H
    Dalton Trans; 2011 Apr; 40(15):3808-14. PubMed ID: 21369612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes.
    Liu DW; Cheng IC; Chen JZ; Chen HW; Ho KC; Chiang CC
    Opt Express; 2012 Mar; 20 Suppl 2():A168-76. PubMed ID: 22418665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EELS investigations of different niobium oxide phases.
    Bach D; Störmer H; Schneider R; Gerthsen D; Verbeeck J
    Microsc Microanal; 2006 Oct; 12(5):416-23. PubMed ID: 16984668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical gas sensing properties of nanoporous Nb2O5 films.
    Ab Kadir R; Rani RA; Alsaif MM; Ou JZ; Wlodarski W; O'Mullane AP; Kalantar-Zadeh K
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4751-8. PubMed ID: 25685899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells.
    Zheng Q; Kang H; Yun J; Lee J; Park JH; Baik S
    ACS Nano; 2011 Jun; 5(6):5088-93. PubMed ID: 21598982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.