These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22512327)

  • 1. DNA electrochemistry with tethered methylene blue.
    Pheeney CG; Barton JK
    Langmuir; 2012 May; 28(17):7063-70. PubMed ID: 22512327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraduplex DNA-mediated electrochemistry of covalently tethered redox-active reporters.
    Pheeney CG; Barton JK
    J Am Chem Soc; 2013 Oct; 135(40):14944-7. PubMed ID: 24079853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes.
    Abi A; Ferapontova EE
    J Am Chem Soc; 2012 Sep; 134(35):14499-507. PubMed ID: 22876831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.
    Kékedy-Nagy L; Shipovskov S; Ferapontova EE
    Anal Chem; 2016 Aug; 88(16):7984-90. PubMed ID: 27441419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.
    Farjami E; Clima L; Gothelf KV; Ferapontova EE
    Analyst; 2010 Jun; 135(6):1443-8. PubMed ID: 20369213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes.
    Farjami E; Campos R; Ferapontova EE
    Langmuir; 2012 Nov; 28(46):16218-26. PubMed ID: 23106377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical properties of interstrand cross-linked DNA duplexes labeled with Nile blue.
    Mie Y; Kowata K; Kojima N; Komatsu Y
    Langmuir; 2012 Dec; 28(49):17211-6. PubMed ID: 23153070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA.
    Boon EM; Barton JK
    Bioconjug Chem; 2003; 14(6):1140-7. PubMed ID: 14624627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning electrochemical microscopy imaging of DNA microarrays using methylene blue as a redox-active intercalator.
    Wain AJ; Zhou F
    Langmuir; 2008 May; 24(9):5155-60. PubMed ID: 18355100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry of methylene blue bound to a DNA-modified electrode.
    Kelley SO; Barton JK; Jackson NM; Hill MG
    Bioconjug Chem; 1997; 8(1):31-7. PubMed ID: 9026032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry at DNA-modified surfaces: new probes for charge transport through the double helix.
    Jackson NM; Hill MG
    Curr Opin Chem Biol; 2001 Apr; 5(2):209-15. PubMed ID: 11282349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Precision Electrochemical Measurements of the Guanine-, Mismatch-, and Length-Dependence of Electron Transfer from Electrode-Bound DNA Are Consistent with a Contact-Mediated Mechanism.
    Dauphin-Ducharme P; Arroyo-Currás N; Plaxco KW
    J Am Chem Soc; 2019 Jan; 141(3):1304-1311. PubMed ID: 30605323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Specific Electron Transfer Mediated by DNA Duplexes Attached to Gold through the Alkanethiol Linker.
    Kékedy-Nagy L; Ferapontova EE
    J Phys Chem B; 2018 Nov; 122(44):10077-10085. PubMed ID: 30336034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning electrochemical microscopy of DNA monolayers modified with Nile Blue.
    Gorodetsky AA; Hammond WJ; Hill MG; Slowinski K; Barton JK
    Langmuir; 2008 Dec; 24(24):14282-8. PubMed ID: 19053641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical DNA-sensor developed with the use of methylene blue as a redox indicator for the detection of DNA damage induced by endocrine-disrupting compounds.
    Lin X; Ni Y; Kokot S
    Anal Chim Acta; 2015 Mar; 867():29-37. PubMed ID: 25813025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-base mismatch detection based on charge transduction through DNA.
    Kelley SO; Boon EM; Barton JK; Jackson NM; Hill MG
    Nucleic Acids Res; 1999 Dec; 27(24):4830-7. PubMed ID: 10572185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation detection by electrocatalysis at DNA-modified electrodes.
    Boon EM; Ceres DM; Drummond TG; Hill MG; Barton JK
    Nat Biotechnol; 2000 Oct; 18(10):1096-100. PubMed ID: 11017050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2'-anthraquinone-conjugated oligonucleotide as an electrochemical probe for DNA mismatch.
    Kumamoto S; Watanabe M; Kawakami N; Nakamura M; Yamana K
    Bioconjug Chem; 2008 Jan; 19(1):65-9. PubMed ID: 17988077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA charge transport over 34 nm.
    Slinker JD; Muren NB; Renfrew SE; Barton JK
    Nat Chem; 2011 Mar; 3(3):228-33. PubMed ID: 21336329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-Controlled Energy Transfer Quenching of Fluorophore-Labeled DNA SAMs Enables In Situ Study of These Complex Electrochemical Interfaces.
    Ma T; Grzȩdowski AJ; Doneux T; Bizzotto D
    J Am Chem Soc; 2022 Dec; 144(51):23428-23437. PubMed ID: 36516982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.