BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22512336)

  • 1. Remote doping and Schottky barrier formation in strongly quantum confined single PbSe nanowire field-effect transistors.
    Oh SJ; Kim DK; Kagan CR
    ACS Nano; 2012 May; 6(5):4328-34. PubMed ID: 22512336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.
    Kim DK; Lai Y; Vemulkar TR; Kagan CR
    ACS Nano; 2011 Dec; 5(12):10074-83. PubMed ID: 22084980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating.
    Lokteva I; Thiemann S; Gannott F; Zaumseil J
    Nanoscale; 2013 May; 5(10):4230-5. PubMed ID: 23545580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Dielectric Environment on Doping Efficiency in Colloidal PbSe Nanostructures.
    Zhao Q; Zhao T; Guo J; Chen W; Zhang M; Kagan CR
    ACS Nano; 2018 Feb; 12(2):1313-1320. PubMed ID: 29346726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.
    Barreda JL; Keiper TD; Zhang M; Xiong P
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors.
    Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL
    ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect.
    Liu C; Dai L; You LP; Xu WJ; Qin GG
    Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors.
    Talapin DV; Murray CB
    Science; 2005 Oct; 310(5745):86-9. PubMed ID: 16210533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schottky barrier and contact resistance of InSb nanowire field-effect transistors.
    Fan D; Kang N; Ghalamestani SG; Dick KA; Xu HQ
    Nanotechnology; 2016 Jul; 27(27):275204. PubMed ID: 27232588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally assisted tunnelling in ambipolar field-effect transistors based on fullerene peapod bundles.
    Guo A; Fu Y; Guan L; Liu J; Shi Z; Gu Z; Huang R; Zhang X
    Nanotechnology; 2006 May; 17(10):2655-60. PubMed ID: 21727520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.
    Oh SJ; Berry NE; Choi JH; Gaulding EA; Paik T; Hong SH; Murray CB; Kagan CR
    ACS Nano; 2013 Mar; 7(3):2413-21. PubMed ID: 23368728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron and hole mobilities in single-layer WSe2.
    Allain A; Kis A
    ACS Nano; 2014 Jul; 8(7):7180-5. PubMed ID: 24949529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires.
    Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X
    Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependences of the electrical properties on the diameter and the doping concentration of the Si nanowire field effect transistors with a Schottky metal-semiconductor contact.
    You JH; Lee SH; You CH; Yu YS; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3609-13. PubMed ID: 20359010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambipolar MoS
    Giannazzo F; Fisichella G; Greco G; Di Franco S; Deretzis I; La Magna A; Bongiorno C; Nicotra G; Spinella C; Scopelliti M; Pignataro B; Agnello S; Roccaforte F
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23164-23174. PubMed ID: 28603968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-based stoichiometric control over charge transport in nanocrystalline CdSe devices.
    Kim DK; Fafarman AT; Diroll BT; Chan SH; Gordon TR; Murray CB; Kagan CR
    ACS Nano; 2013 Oct; 7(10):8760-70. PubMed ID: 24047327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal/nanowire contacts, quantum confinement, and their roles in the generation of new, gigantic actions in nanowire transistors.
    Mohammad SN
    Nanotechnology; 2013 Nov; 24(45):455201. PubMed ID: 24129340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications.
    Cai J; Jie J; Jiang P; Wu D; Xie C; Wu C; Wang Z; Yu Y; Wang L; Zhang X; Peng Q; Jiang Y
    Phys Chem Chem Phys; 2011 Aug; 13(32):14663-7. PubMed ID: 21709907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors.
    Zhao Y; Candebat D; Delker C; Zi Y; Janes D; Appenzeller J; Yang C
    Nano Lett; 2012 Oct; 12(10):5331-6. PubMed ID: 22950905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.