These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22512447)

  • 1. Polymeric nanocarriers and nanoreactors: a survey of possible therapeutic applications.
    Onaca-Fischer O; Liu J; Inglin M; Palivan CG
    Curr Pharm Des; 2012; 18(18):2622-43. PubMed ID: 22512447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors.
    Balasubramanian V; Onaca O; Enea R; Hughes DW; Palivan CG
    Expert Opin Drug Deliv; 2010 Jan; 7(1):63-78. PubMed ID: 19961359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?
    Tanner P; Egli S; Balasubramanian V; Onaca O; Palivan CG; Meier W
    FEBS Lett; 2011 Jun; 585(11):1699-706. PubMed ID: 21565194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of polymeric nanostructure shape on drug delivery.
    Venkataraman S; Hedrick JL; Ong ZY; Yang C; Ee PL; Hammond PT; Yang YY
    Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1228-46. PubMed ID: 21777633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-polymer nanoreactors for medical applications.
    Palivan CG; Fischer-Onaca O; Delcea M; Itel F; Meier W
    Chem Soc Rev; 2012 Apr; 41(7):2800-23. PubMed ID: 22085991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells.
    Deng Z; Qian Y; Yu Y; Liu G; Hu J; Zhang G; Liu S
    J Am Chem Soc; 2016 Aug; 138(33):10452-66. PubMed ID: 27485779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy.
    Mukerabigwi JF; Ge Z; Kataoka K
    Chemistry; 2018 Oct; 24(59):15706-15724. PubMed ID: 29572992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery.
    Liu Z; Wang Y; Zhang N
    Expert Opin Drug Deliv; 2012 Jul; 9(7):805-22. PubMed ID: 22607499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.
    Martin C; Aibani N; Callan JF; Callan B
    Ther Deliv; 2016; 7(1):15-31. PubMed ID: 26652620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperbranched Polymers with Controllable Topologies for Drug Delivery.
    Ban Q; Sun W; Kong J; Wu S
    Chem Asian J; 2018 Nov; 13(22):3341-3350. PubMed ID: 29911351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nose to Brain Delivery: New Trends in Amphiphile-Based "Soft" Nanocarriers.
    Marianecci C; Rinaldi F; Hanieh PN; Paolino D; Marzio LD; Carafa M
    Curr Pharm Des; 2015; 21(36):5225-32. PubMed ID: 26412357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric micelles as drug carriers: their lights and shadows.
    Yokoyama M
    J Drug Target; 2014 Aug; 22(7):576-83. PubMed ID: 25012065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery.
    Soliman GM; Sharma A; Maysinger D; Kakkar A
    Chem Commun (Camb); 2011 Sep; 47(34):9572-87. PubMed ID: 21655634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications.
    Fleige E; Quadir MA; Haag R
    Adv Drug Deliv Rev; 2012 Jun; 64(9):866-84. PubMed ID: 22349241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.
    Sala M; Diab R; Elaissari A; Fessi H
    Int J Pharm; 2018 Jan; 535(1-2):1-17. PubMed ID: 29111097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.
    Zhou Q; Zhang L; Yang T; Wu H
    Int J Nanomedicine; 2018; 13():2921-2942. PubMed ID: 29849457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Chain Polymeric Nanocarriers: A Platform for Determining Structure-Function Correlations in the Delivery of Molecular Cargo.
    Chan D; Yu AC; Appel EA
    Biomacromolecules; 2017 Apr; 18(4):1434-1439. PubMed ID: 28263572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.