These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22512649)

  • 21. A structural comparison of type c lysozymes based on their hydropathic profiles.
    Menéndez-Arias L; Gavilanes JG; Rodriguez R
    J Theor Biol; 1987 Jul; 127(2):221-8. PubMed ID: 3695547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
    Klimas AJ; Uritsky VM
    Phys Rev E; 2017 Feb; 95(2-1):023209. PubMed ID: 28297949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.
    De Marothy MT; Elofsson A
    Protein Sci; 2015 Jul; 24(7):1057-74. PubMed ID: 25970811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling and self-organized criticality in proteins II.
    Phillips JC
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3113-8. PubMed ID: 19124778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of transmembrane helices by the endoplasmic reticulum translocon.
    Hessa T; Kim H; Bihlmaier K; Lundin C; Boekel J; Andersson H; Nilsson I; White SH; von Heijne G
    Nature; 2005 Jan; 433(7024):377-81. PubMed ID: 15674282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological membranes: the importance of molecular detail.
    Lee AG
    Trends Biochem Sci; 2011 Sep; 36(9):493-500. PubMed ID: 21855348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions.
    Ladokhin AS; White SH
    J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Positioning of proteins in membranes: a computational approach.
    Lomize AL; Pogozheva ID; Lomize MA; Mosberg HI
    Protein Sci; 2006 Jun; 15(6):1318-33. PubMed ID: 16731967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple atomic-level hydrophobicity scale reveals protein interfacial structure.
    Kapcha LH; Rossky PJ
    J Mol Biol; 2014 Jan; 426(2):484-98. PubMed ID: 24120937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discrimination of Golgi type II membrane proteins based on their hydropathy profiles and the amino acid propensities of their transmembrane regions.
    Mukai Y; Yoshizawa M; Sasaki T; Ikeda M; Tomii K; Hirokawa T; Suwa M
    Biosci Biotechnol Biochem; 2011; 75(1):82-8. PubMed ID: 21228484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; Lemaître V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for self-organized criticality in human epileptic hippocampus.
    Worrell GA; Cranstoun SD; Echauz J; Litt B
    Neuroreport; 2002 Nov; 13(16):2017-21. PubMed ID: 12438917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Entrapment of Water at the Transmembrane Helix-Helix Interface of Quiescin Sulfhydryl Oxidase 2.
    Ried CL; Scharnagl C; Langosch D
    Biochemistry; 2016 Mar; 55(9):1287-90. PubMed ID: 26894260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid hydrophobicity and accessible surface area.
    Moret MA; Zebende GF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011920. PubMed ID: 17358197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary conservation of both the hydrophilic and hydrophobic nature of transmembrane residues.
    Riek RP; Handschumacher MD; Sung SS; Tan M; Glynias MJ; Schluchter MD; Novotny J; Graham RM
    J Theor Biol; 1995 Feb; 172(3):245-58. PubMed ID: 7715195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating the prevalence of protein sequences adopting functional enzyme folds.
    Axe DD
    J Mol Biol; 2004 Aug; 341(5):1295-315. PubMed ID: 15321723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the predicted secondary structure of bacteriorhodopsin. Prediction of the bovine rhodopsin secondary structure and its sequence similarity with bacteriorhodopsin.
    Nero TL; Louis WJ
    Biochem Int; 1992 Aug; 27(5):763-70. PubMed ID: 1417909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods.
    Natt NK; Kaur H; Raghava GP
    Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cluster size distributions: signatures of self-organization in spatial ecologies.
    Pascual M; Roy M; Guichard F; Flierl G
    Philos Trans R Soc Lond B Biol Sci; 2002 May; 357(1421):657-66. PubMed ID: 12079527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.