These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22512737)

  • 1. NADINE: new approaches to detecting breast cancer by sequential μm-wavelength imaging with the aid of novel frequency analysis techniques.
    Joro R; Dastidar P; Iivonen V; Ylänen H; Soimakallio S
    J Med Eng Technol; 2012 Jul; 36(5):251-60. PubMed ID: 22512737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic infrared imaging-based diagnostic process for breast cancer.
    Joro R; Lääperi AL; Dastidar P; Järvenpää R; Kuukasjärvi T; Toivonen T; Saaristo R; Soimakallio S
    Acta Radiol; 2009 Oct; 50(8):860-9. PubMed ID: 19636984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis.
    Joro R; Lääperi AL; Soimakallio S; Järvenpää R; Kuukasjärvi T; Toivonen T; Saaristo R; Dastidar P
    J Med Eng Technol; 2008; 32(4):325-35. PubMed ID: 18666012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of breast cancer with mid- and long-wave infrared camera.
    Joro R; Lääperi AL; Dastidar P; Soimakallio S; Kuukasjärvi T; Toivonen T; Saaristo R; Järvenpää R
    J Med Eng Technol; 2008; 32(3):189-97. PubMed ID: 18432466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New diagnostic techniques for breast cancer detection.
    Singh V; Saunders C; Wylie L; Bourke A
    Future Oncol; 2008 Aug; 4(4):501-13. PubMed ID: 18684061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives.
    Taroni P
    Photochem Photobiol Sci; 2012 Feb; 11(2):241-50. PubMed ID: 22094324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging.
    Lee NA; Rusinek H; Weinreb J; Chandra R; Toth H; Singer C; Newstead G
    AJR Am J Roentgenol; 1997 Feb; 168(2):501-6. PubMed ID: 9016235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality.
    O'Connell A; Conover DL; Zhang Y; Seifert P; Logan-Young W; Lin CF; Sahler L; Ning R
    AJR Am J Roentgenol; 2010 Aug; 195(2):496-509. PubMed ID: 20651210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer.
    Berg WA; Gutierrez L; NessAiver MS; Carter WB; Bhargavan M; Lewis RS; Ioffe OB
    Radiology; 2004 Dec; 233(3):830-49. PubMed ID: 15486214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of x-ray diffraction enhanced imaging in the diagnosis of breast cancer.
    Liu C; Yan X; Zhang X; Yang W; Peng W; Shi D; Zhu P; Huang W; Yuan Q
    Phys Med Biol; 2007 Jan; 52(2):419-27. PubMed ID: 17202624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms.
    Poplack SP; Tosteson TD; Wells WA; Pogue BW; Meaney PM; Hartov A; Kogel CA; Soho SK; Gibson JJ; Paulsen KD
    Radiology; 2007 May; 243(2):350-9. PubMed ID: 17400760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mismatch in breast and detector size during screening and diagnostic mammography results in increased patient radiation dose.
    Wells CL; Slanetz PJ; Rosen MP
    Acad Radiol; 2014 Jan; 21(1):99-103. PubMed ID: 24331271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast lesion co-localisation between X-ray and MR images using finite element modelling.
    Lee AW; Rajagopal V; Babarenda Gamage TP; Doyle AJ; Nielsen PM; Nash MP
    Med Image Anal; 2013 Dec; 17(8):1256-64. PubMed ID: 23860392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast 3D Near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions.
    Schneider P; Piper S; Schmitz CH; Schreiter NF; Volkwein N; Lüdemann L; Malzahn U; Poellinger A
    Rofo; 2011 Oct; 183(10):956-63. PubMed ID: 21972043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scintimammography with dedicated breast camera detects and localizes occult carcinoma.
    Coover LR; Caravaglia G; Kuhn P
    J Nucl Med; 2004 Apr; 45(4):553-8. PubMed ID: 15073249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image quality, threshold contrast and mean glandular dose in CR mammography.
    Jakubiak RR; Gamba HR; Neves EB; Peixoto JE
    Phys Med Biol; 2013 Sep; 58(18):6565-83. PubMed ID: 24002695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Update on breast imaging. New imaging techniques have led to advances in breast cancer detection. What does that mean for the annual mammogram?
    Harv Womens Health Watch; 2003 Jun; 10(10):4-6. PubMed ID: 12835158
    [No Abstract]   [Full Text] [Related]  

  • 18. A digital density equalization technique to improve visualization of breast periphery in mammography.
    Stefanoyiannis AP; Costaridou L; Sakellaropoulos P; Panayiotakis G
    Br J Radiol; 2000 Apr; 73(868):410-20. PubMed ID: 10844867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial recurrence analysis: a sensitive and fast detection tool in digital mammography.
    Prado TL; Galuzio PP; Lopes SR; Viana RL
    Chaos; 2014 Mar; 24(1):013106. PubMed ID: 24697368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the diagnostic methods on the therapeutic strategies.
    Greco M; Agresti R; Giovanazzi R
    Q J Nucl Med; 1998 Mar; 42(1):66-80. PubMed ID: 9646647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.