These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22512862)

  • 1. CcpA forms complexes with CodY and RpoA in Bacillus subtilis.
    Wünsche A; Hammer E; Bartholomae M; Völker U; Burkovski A; Seidel G; Hillen W
    FEBS J; 2012 Jun; 279(12):2201-14. PubMed ID: 22512862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.
    Seidel G; Diel M; Fuchsbauer N; Hillen W
    FEBS J; 2005 May; 272(10):2566-77. PubMed ID: 15885105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CcpA-mediated catabolite activation of the Bacillus subtilis ilv-leu operon and its negation by either CodY- or TnrA-mediated negative regulation.
    Fujita Y; Satomura T; Tojo S; Hirooka K
    J Bacteriol; 2014 Nov; 196(21):3793-806. PubMed ID: 25157083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
    Puri-Taneja A; Paul S; Chen Y; Hulett FM
    J Bacteriol; 2006 Feb; 188(4):1266-78. PubMed ID: 16452408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
    Lorca GL; Chung YJ; Barabote RD; Weyler W; Schilling CH; Saier MH
    J Bacteriol; 2005 Nov; 187(22):7826-39. PubMed ID: 16267306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis.
    Müller W; Horstmann N; Hillen W; Sticht H
    FEBS J; 2006 Mar; 273(6):1251-61. PubMed ID: 16519689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus subtilis ilvB operon: an intersection of global regulons.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2005 Jun; 56(6):1549-59. PubMed ID: 15916605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site.
    Moir-Blais TR; Grundy FJ; Henkin TM
    J Bacteriol; 2001 Apr; 183(7):2389-93. PubMed ID: 11244084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residues His-15 and Arg-17 of HPr participate differently in catabolite signal processing via CcpA.
    Horstmann N; Seidel G; Aung-Hilbrich LM; Hillen W
    J Biol Chem; 2007 Jan; 282(2):1175-82. PubMed ID: 17085448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow.
    Shivers RP; Dineen SS; Sonenshein AL
    Mol Microbiol; 2006 Nov; 62(3):811-22. PubMed ID: 16995897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate.
    Schumacher MA; Seidel G; Hillen W; Brennan RG
    J Mol Biol; 2007 May; 368(4):1042-50. PubMed ID: 17376479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA.
    Tojo S; Satomura T; Morisaki K; Deutscher J; Hirooka K; Fujita Y
    Mol Microbiol; 2005 Jun; 56(6):1560-73. PubMed ID: 15916606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CcpA mutants with differential activities in Bacillus subtilis.
    Sprehe M; Seidel G; Diel M; Hillen W
    J Mol Microbiol Biotechnol; 2007; 12(1-2):96-105. PubMed ID: 17183216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P.
    Schumacher MA; Allen GS; Diel M; Seidel G; Hillen W; Brennan RG
    Cell; 2004 Sep; 118(6):731-41. PubMed ID: 15369672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CcpA and CodY Coordinate Acetate Metabolism in Streptococcus mutans.
    Kim JN; Burne RA
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
    Servant P; Le Coq D; Aymerich S
    Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.