BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 22513113)

  • 1. Bivalent histone modifications in early embryogenesis.
    Vastenhouw NL; Schier AF
    Curr Opin Cell Biol; 2012 Jun; 24(3):374-86. PubMed ID: 22513113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin signature of embryonic pluripotency is established during genome activation.
    Vastenhouw NL; Zhang Y; Woods IG; Imam F; Regev A; Liu XS; Rinn J; Schier AF
    Nature; 2010 Apr; 464(7290):922-6. PubMed ID: 20336069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells.
    Xu J; Kidder BL
    BMC Genomics; 2018 Jul; 19(1):514. PubMed ID: 29969988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bivalent Histone Modifications and Development.
    Li F; Wan M; Zhang B; Peng Y; Zhou Y; Pi C; Xu X; Ye L; Zhou X; Zheng L
    Curr Stem Cell Res Ther; 2018; 13(2):83-90. PubMed ID: 28117006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic signatures and temporal expression of lineage-specific genes in hESCs during differentiation to hepatocytes in vitro.
    Kim H; Jang MJ; Kang MJ; Han YM
    Hum Mol Genet; 2011 Feb; 20(3):401-12. PubMed ID: 21059703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.
    Liu X; Wang C; Liu W; Li J; Li C; Kou X; Chen J; Zhao Y; Gao H; Wang H; Zhang Y; Gao Y; Gao S
    Nature; 2016 Sep; 537(7621):558-562. PubMed ID: 27626379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unique chromatin signature uncovers early developmental enhancers in humans.
    Rada-Iglesias A; Bajpai R; Swigut T; Brugmann SA; Flynn RA; Wysocka J
    Nature; 2011 Feb; 470(7333):279-83. PubMed ID: 21160473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin remodeling and bivalent histone modifications in embryonic stem cells.
    Harikumar A; Meshorer E
    EMBO Rep; 2015 Dec; 16(12):1609-19. PubMed ID: 26553936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells.
    Sun H; Wang Y; Wang Y; Ji F; Wang A; Yang M; He X; Li L
    Stem Cell Rev Rep; 2022 Jan; 18(1):165-178. PubMed ID: 34417934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.
    Pan G; Tian S; Nie J; Yang C; Ruotti V; Wei H; Jonsdottir GA; Stewart R; Thomson JA
    Cell Stem Cell; 2007 Sep; 1(3):299-312. PubMed ID: 18371364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A double take on bivalent promoters.
    Voigt P; Tee WW; Reinberg D
    Genes Dev; 2013 Jun; 27(12):1318-38. PubMed ID: 23788621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo.
    Sachs M; Onodera C; Blaschke K; Ebata KT; Song JS; Ramalho-Santos M
    Cell Rep; 2013 Jun; 3(6):1777-84. PubMed ID: 23727241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin regulation Tip(60)s the balance in embryonic stem cell self-renewal.
    Fazzio TG; Huff JT; Panning B
    Cell Cycle; 2008 Nov; 7(21):3302-6. PubMed ID: 18948739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators.
    Landeira D; Sauer S; Poot R; Dvorkina M; Mazzarella L; Jørgensen HF; Pereira CF; Leleu M; Piccolo FM; Spivakov M; Brookes E; Pombo A; Fisher C; Skarnes WC; Snoek T; Bezstarosti K; Demmers J; Klose RJ; Casanova M; Tavares L; Brockdorff N; Merkenschlager M; Fisher AG
    Nat Cell Biol; 2010 Jun; 12(6):618-24. PubMed ID: 20473294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development.
    Shpargel KB; Starmer J; Yee D; Pohlers M; Magnuson T
    PLoS Genet; 2014 Aug; 10(8):e1004507. PubMed ID: 25101834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation.
    Binder H; Steiner L; Przybilla J; Rohlf T; Prohaska S; Galle J
    Phys Biol; 2013 Apr; 10(2):026006. PubMed ID: 23481318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth.
    Chow MZ; Geng L; Kong CW; Keung W; Fung JC; Boheler KR; Li RA
    Stem Cells Dev; 2013 Oct; 22(19):2678-90. PubMed ID: 23656529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype.
    McGann JC; Oyer JA; Garg S; Yao H; Liu J; Feng X; Liao L; Yates JR; Mandel G
    Elife; 2014 Sep; 3():e04235. PubMed ID: 25250711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation.
    Subramanian V; Mazumder A; Surface LE; Butty VL; Fields PA; Alwan A; Torrey L; Thai KK; Levine SS; Bathe M; Boyer LA
    PLoS Genet; 2013; 9(8):e1003725. PubMed ID: 23990805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.