These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22513251)

  • 21. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.
    Chen H; Chen X; Qin Y; Wei J; Liu H
    Bioresour Technol; 2017 Mar; 228():241-249. PubMed ID: 28068592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural evolution of maize stalk/char particles during pyrolysis.
    Fu P; Hu S; Sun L; Xiang J; Yang T; Zhang A; Zhang J
    Bioresour Technol; 2009 Oct; 100(20):4877-83. PubMed ID: 19481930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.
    Gao X; Zhang Y; Li B; Zhao Y; Jiang B
    Bioresour Technol; 2016 Oct; 218():1073-81. PubMed ID: 27459684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure characteristics and gasification reactivity of co-pyrolysis char from lignocellulosic biomass and waste plastics: Effect of polyethylene.
    Kai X; Wang L; Yang T; Zhang T; Li B; Liu Z; Yan W; Li R
    Int J Biol Macromol; 2024 Nov; 279(Pt 2):135185. PubMed ID: 39216581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.
    Yan F; Luo SY; Hu ZQ; Xiao B; Cheng G
    Bioresour Technol; 2010 Jul; 101(14):5633-7. PubMed ID: 20194019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Water Content and Particle Size on Yield and Reactivity of Lignite Chars Derived from Pyrolysis and Gasification.
    Huang Y; Wang Y; Zhou H; Gao Y; Xu D; Bai L; Zhang S
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30360366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen production from biomass gasification using biochar as a catalyst/support.
    Yao D; Hu Q; Wang D; Yang H; Wu C; Wang X; Chen H
    Bioresour Technol; 2016 Sep; 216():159-64. PubMed ID: 27240230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gasification of the char derived from distillation of granulated scrap tyres.
    López FA; Centeno TA; Alguacil FJ; Lobato B; López-Delgado A; Fermoso J
    Waste Manag; 2012 Apr; 32(4):743-52. PubMed ID: 21906928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.
    Xie Q; Kong S; Liu Y; Zeng H
    Bioresour Technol; 2012 Apr; 110():603-9. PubMed ID: 22342084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.
    Yang C; Jia L; Su S; Tian Z; Song Q; Fang W; Chen C; Liu G
    Bioresour Technol; 2012 Apr; 110():676-81. PubMed ID: 22336747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.
    Long J; Song H; Jun X; Sheng S; Lun-Shi S; Kai X; Yao Y
    Bioresour Technol; 2012 Jul; 116():278-84. PubMed ID: 22525260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of rice husk gasification in an entrained flow reactor.
    Zhao Y; Sun S; Tian H; Qian J; Su F; Ling F
    Bioresour Technol; 2009 Dec; 100(23):6040-4. PubMed ID: 19589673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of metal catalysts on CO2 gasification reactivity of biomass char.
    Huang Y; Yin X; Wu C; Wang C; Xie J; Zhou Z; Ma L; Li H
    Biotechnol Adv; 2009; 27(5):568-72. PubMed ID: 19393736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes.
    Al-Wabel MI; Al-Omran A; El-Naggar AH; Nadeem M; Usman AR
    Bioresour Technol; 2013 Mar; 131():374-9. PubMed ID: 23376202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study on gasification of oil sludge with steam and its char characteristic.
    Chu Z; Gong Z; Wang Z; Zhang H; Liu L; Wu J; Wang J
    J Hazard Mater; 2021 Aug; 416():125713. PubMed ID: 34492773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new method of comprehensive utilization of rice husk.
    Li Y; Ding X; Guo Y; Rong C; Wang L; Qu Y; Ma X; Wang Z
    J Hazard Mater; 2011 Feb; 186(2-3):2151-6. PubMed ID: 21251754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions.
    Sebe E; Nagy G; Kállay AA
    Environ Technol; 2024 Oct; 45(24):5025-5036. PubMed ID: 37970831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char.
    Zhang SY; Hong RY; Cao JP; Takarada T
    Bioresour Technol; 2009 Sep; 100(18):4278-83. PubMed ID: 19423338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Volatile-char interactions during biomass pyrolysis: Understanding the potential origin of char activity.
    Huang Y; Liu S; Akhtar MA; Li B; Zhou J; Zhang S; Zhang H
    Bioresour Technol; 2020 Nov; 316():123938. PubMed ID: 32758923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-gasification of wet sewage sludge and forestry waste in situ steam agent.
    Peng L; Wang Y; Lei Z; Cheng G
    Bioresour Technol; 2012 Jun; 114():698-702. PubMed ID: 22503423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.