These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22513616)

  • 1. Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres.
    Pikulin A; Afanasiev A; Agareva N; Alexandrov AP; Bredikhin V; Bityurin N
    Opt Express; 2012 Apr; 20(8):9052-7. PubMed ID: 22513616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain.
    Tanaka Y; Obara G; Zenidaka A; Nedyalkov NN; Terakawa M; Obara M
    Opt Express; 2010 Dec; 18(26):27226-37. PubMed ID: 21197000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Visualization of Colloidal Particle Lens Array Mediated Plasma Dynamics for Dielectric Nanoparticle Enhanced Femtosecond Laser-Induced Breakdown Spectroscopy.
    Wang M; Jiang L; Wang S; Guo Q; Tian F; Chu Z; Zhang J; Li X; Lu Y
    Anal Chem; 2019 Aug; 91(15):9952-9961. PubMed ID: 31266295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic coupling in near-field scattering by small homogeneous and heterogeneous nanoaggregates.
    Bruzzone S; Malvaldi M; Arrighini GP; Guidotti C
    J Phys Chem B; 2005 Dec; 109(50):23808-15. PubMed ID: 16375365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis.
    Satoh A
    J Colloid Interface Sci; 2008 Feb; 318(1):68-81. PubMed ID: 17988678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative design of multilayered dielectric microspheres with tunable transparency windows.
    Hudak NJ; Garrett BS; DeLacy BG; Mirotznik MS
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):705-715. PubMed ID: 31044996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate.
    Spinelli P; van Lare C; Verhagen E; Polman A
    Opt Express; 2011 May; 19 Suppl 3():A303-11. PubMed ID: 21643371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Mie theory for resonances in nanoparticles of any shape.
    Papoff F; Hourahine B
    Opt Express; 2011 Oct; 19(22):21432-44. PubMed ID: 22108993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers.
    Benincasa DS; Barber PW; Zhang JZ; Hsieh WF; Chang RK
    Appl Opt; 1987 Apr; 26(7):1348-56. PubMed ID: 20454323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres.
    Yan Q; Bai Y; Meng Z; Yang W
    J Phys Chem B; 2008 Jun; 112(23):6914-22. PubMed ID: 18489142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding optical modes in chains of dielectric particles.
    Blaustein GS; Gozman MI; Samoylova O; Polishchuk IY; Burin AL
    Opt Express; 2007 Dec; 15(25):17380-91. PubMed ID: 19551032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles.
    Sih BC; Wolf MO
    J Phys Chem B; 2006 Nov; 110(45):22298-301. PubMed ID: 17091965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres.
    Sun G; Chan CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036613. PubMed ID: 16605683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mie resonances of dielectric spheres in face-centered cubic photonic crystals.
    Vandenbem C; Vigneron JP
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jun; 22(6):1042-7. PubMed ID: 15984476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres.
    Cao Y; Liu Z; Minin OV; Minin IV
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
    Ristenpart WD; Aksay IA; Saville DA
    Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of spherical colloidal crystals using electrospray.
    Hong SH; Moon JH; Lim JM; Kim SH; Yang SM
    Langmuir; 2005 Nov; 21(23):10416-21. PubMed ID: 16262301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate surface patterning by optical near field modulation around colloidal particles immersed in a liquid.
    Ulmeanu M; Petkov P; Ursescu D; Jipa F; Harniman R; Brousseau E; Ashfold MN
    Opt Express; 2016 Nov; 24(24):27340-27351. PubMed ID: 27906306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic-field calculations for irregularly shaped, axisymmetric layered particles with focused illumination.
    Barton JP
    Appl Opt; 1996 Jan; 35(3):532-41. PubMed ID: 21069037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.