These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22513652)

  • 1. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers.
    Zaberca O; Oftinger F; Chane-Ching JY; Datas L; Lafond A; Puech P; Balocchi A; Lagarde D; Marie X
    Nanotechnology; 2012 May; 23(18):185402. PubMed ID: 22513652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu₂ZnSnS₄ nanoparticles.
    Tan JM; Lee YH; Pedireddy S; Baikie T; Ling XY; Wong LH
    J Am Chem Soc; 2014 May; 136(18):6684-92. PubMed ID: 24702183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting.
    Ghorpade UV; Suryawanshi MP; Shin SW; Hong CW; Kim I; Moon JH; Yun JH; Kim JH; Kolekar SS
    Phys Chem Chem Phys; 2015 Aug; 17(30):19777-88. PubMed ID: 26153341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route.
    Mirbagheri N; Engberg S; Crovetto A; Simonsen SB; Hansen O; Lam YM; Schou J
    Nanotechnology; 2016 May; 27(18):185603. PubMed ID: 27005863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications.
    Kim Y; Woo K; Kim I; Cho YS; Jeong S; Moon J
    Nanoscale; 2013 Nov; 5(21):10183-8. PubMed ID: 24057000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical insights into the formation of Cu
    Foncrose V; Persello J; Puech P; Chane-Ching JY; Lagarde D; Balocchi A; Marie X
    Nanotechnology; 2017 Nov; 28(44):445709. PubMed ID: 28825410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells.
    Park BI; Hwang Y; Lee SY; Lee JS; Park JK; Jeong J; Kim JY; Kim B; Cho SH; Lee DK
    Nanoscale; 2014 Oct; 6(20):11703-11. PubMed ID: 25091974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires.
    Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM
    Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells.
    Guo Q; Hillhouse HW; Agrawal R
    J Am Chem Soc; 2009 Aug; 131(33):11672-3. PubMed ID: 19722591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films.
    Just J; Sutter-Fella CM; Lützenkirchen-Hecht D; Frahm R; Schorr S; Unold T
    Phys Chem Chem Phys; 2016 Jun; 18(23):15988-94. PubMed ID: 27240735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.
    Buffière M; Brammertz G; Sahayaraj S; Batuk M; Khelifi S; Mangin D; El Mel AA; Arzel L; Hadermann J; Meuris M; Poortmans J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14690-8. PubMed ID: 26039042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu₂ZnSnS(4x)Se(4(1-x)) solar cells from polar nanocrystal inks.
    van Embden J; Chesman AS; Della Gaspera E; Duffy NW; Watkins SE; Jasieniak JJ
    J Am Chem Soc; 2014 Apr; 136(14):5237-40. PubMed ID: 24690032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The consequences of kesterite equilibria for efficient solar cells.
    Redinger A; Berg DM; Dale PJ; Siebentritt S
    J Am Chem Soc; 2011 Mar; 133(10):3320-3. PubMed ID: 21329385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission electron microscopy analysis for the process of crystallization of Cu₂ZnSnS₄ film from sputtered Zn/CuSn precursor.
    Li W; Chen J; Yan C; Liu F; Hao X
    Nanotechnology; 2014 May; 25(19):195701. PubMed ID: 24762660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films.
    Yang W; Duan HS; Cha KC; Hsu CJ; Hsu WC; Zhou H; Bob B; Yang Y
    J Am Chem Soc; 2013 May; 135(18):6915-20. PubMed ID: 23581974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical characterization of nanocrystalline thin-film Cu₂ZnSnS₄ photocathodes.
    Riha SC; Fredrick SJ; Sambur JB; Liu Y; Prieto AL; Parkinson BA
    ACS Appl Mater Interfaces; 2011 Jan; 3(1):58-66. PubMed ID: 21194208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells.
    Ramasamy K; Malik MA; O'Brien P
    Chem Commun (Camb); 2012 Jun; 48(46):5703-14. PubMed ID: 22531115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.