These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22513652)

  • 21. Aging Precursor Solution in High Humidity Remarkably Promoted Grain Growth in Cu₂ZnSnS₄ Films.
    Guan Z; Luo W; Xu Y; Tao Q; Wen X; Zou Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5432-8. PubMed ID: 26863181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step synthesis of stoichiometric Cu2ZnSnSe4 as counter electrode for dye-sensitized solar cells.
    Du YF; Fan JQ; Zhou WH; Zhou ZJ; Jiao J; Wu SX
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1796-802. PubMed ID: 22387625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid-state NMR and Raman spectroscopy to address the local structure of defects and the tricky issue of the Cu/Zn disorder in Cu-poor, Zn-rich CZTS materials.
    Paris M; Choubrac L; Lafond A; Guillot-Deudon C; Jobic S
    Inorg Chem; 2014 Aug; 53(16):8646-53. PubMed ID: 25069473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.
    Steichen M; Thomassey M; Siebentritt S; Dale PJ
    Phys Chem Chem Phys; 2011 Mar; 13(10):4292-302. PubMed ID: 21249244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of iron hydroxide/oxide nanoparticles prepared in microemulsions stabilized with cationic/non-ionic surfactant mixtures.
    Bumajdad A; Ali S; Mathew A
    J Colloid Interface Sci; 2011 Mar; 355(2):282-92. PubMed ID: 21232750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals.
    Guo Q; Ford GM; Yang WC; Walker BC; Stach EA; Hillhouse HW; Agrawal R
    J Am Chem Soc; 2010 Dec; 132(49):17384-6. PubMed ID: 21090644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals.
    Zhou H; Song TB; Hsu WC; Luo S; Ye S; Duan HS; Hsu CJ; Yang W; Yang Y
    J Am Chem Soc; 2013 Oct; 135(43):15998-6001. PubMed ID: 24128165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-pot noninjection synthesis of Cu-doped Zn(x)Cd(1-x)S nanocrystals with emission color tunable over entire visible spectrum.
    Zhang W; Zhou X; Zhong X
    Inorg Chem; 2012 Mar; 51(6):3579-87. PubMed ID: 22364175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics.
    Wang J; Xin X; Lin Z
    Nanoscale; 2011 Aug; 3(8):3040-8. PubMed ID: 21713274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2011 Oct; 133(39):15272-5. PubMed ID: 21882872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.
    Hong F; Lin W; Meng W; Yan Y
    Phys Chem Chem Phys; 2016 Feb; 18(6):4828-34. PubMed ID: 26804024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient thermolysis route to monodisperse Cu₂ZnSnS₄ nanocrystals with controlled shape and structure.
    Zhang X; Guo G; Ji C; Huang K; Zha C; Wang Y; Shen L; Gupta A; Bao N
    Sci Rep; 2014 May; 4():5086. PubMed ID: 24866987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu₂ZnSnS₄-Ag₂S Nanoscale p-n Heterostructures as Sensitizers for Photoelectrochemical Water Splitting.
    Yu X; Liu J; Genç A; Ibáñez M; Luo Z; Shavel A; Arbiol J; Zhang G; Zhang Y; Cabot A
    Langmuir; 2015 Sep; 31(38):10555-61. PubMed ID: 26343896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of solvent quality on nanoparticle dispersion in semidilute and concentrated polymer solutions.
    Dutta N; Green D
    Langmuir; 2010 Nov; 26(22):16737-44. PubMed ID: 20973521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two routes to vesicle formation: metal-ligand complexation and ionic interactions.
    Wang J; Song A; Jia X; Hao J; Liu W; Hoffmann H
    J Phys Chem B; 2005 Jun; 109(22):11126-34. PubMed ID: 16852357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics.
    Steinhagen C; Panthani MG; Akhavan V; Goodfellow B; Koo B; Korgel BA
    J Am Chem Soc; 2009 Sep; 131(35):12554-5. PubMed ID: 19685876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters.
    Cheng T; Allen HE
    J Environ Manage; 2006 Aug; 80(3):222-9. PubMed ID: 16338053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From nanoplates to microtubes and microrods: a surfactant-free rolling mechanism for facile fabrication and morphology evolution of Ag2S films.
    Li DP; Zheng Z; Lei Y; Yang FL; Ge SX; Zhang YD; Huang BJ; Gao YH; Wong KW; Lau WM
    Chemistry; 2011 Jun; 17(27):7694-700. PubMed ID: 21563220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.