BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22513826)

  • 1. Thinning and shaping solid films into functional and integrative nanomembranes.
    Huang G; Mei Y
    Adv Mater; 2012 May; 24(19):2517-46. PubMed ID: 22513826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics.
    Yin L; Farimani AB; Min K; Vishal N; Lam J; Lee YK; Aluru NR; Rogers JA
    Adv Mater; 2015 Mar; 27(11):1857-64. PubMed ID: 25626856
    [No Abstract]   [Full Text] [Related]  

  • 3. Biaxially stretchable "wavy" silicon nanomembranes.
    Choi WM; Song J; Khang DY; Jiang H; Huang YY; Rogers JA
    Nano Lett; 2007 Jun; 7(6):1655-63. PubMed ID: 17488053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.
    Hwang SW; Lee CH; Cheng H; Jeong JW; Kang SK; Kim JH; Shin J; Yang J; Liu Z; Ameer GA; Huang Y; Rogers JA
    Nano Lett; 2015 May; 15(5):2801-8. PubMed ID: 25706246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical architecture of semiconductor nanomembranes.
    Huang M; Cavallo F; Liu F; Lagally MG
    Nanoscale; 2011 Jan; 3(1):96-120. PubMed ID: 21031195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors.
    Wang H; Zhen H; Li S; Jing Y; Huang G; Mei Y; Lu W
    Sci Adv; 2016 Aug; 2(8):e1600027. PubMed ID: 27536723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly and Self-Assembly of Nanomembrane Materials-From 2D to 3D.
    Huang G; Mei Y
    Small; 2018 Apr; 14(14):e1703665. PubMed ID: 29292590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.
    Hwang SW; Park G; Edwards C; Corbin EA; Kang SK; Cheng H; Song JK; Kim JH; Yu S; Ng J; Lee JE; Kim J; Yee C; Bhaduri B; Su Y; Omennetto FG; Huang Y; Bashir R; Goddard L; Popescu G; Lee KM; Rogers JA
    ACS Nano; 2014 Jun; 8(6):5843-51. PubMed ID: 24684516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics.
    Sun L; Qin G; Seo JH; Celler GK; Zhou W; Ma Z
    Small; 2010 Nov; 6(22):2553-7. PubMed ID: 20878631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes.
    Lindemann P; Träutlein Y; Wöll C; Tsotsalas M
    J Vis Exp; 2015 Dec; (106):e53324. PubMed ID: 26710232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide.
    Mashoff T; Pratzer M; Geringer V; Echtermeyer TJ; Lemme MC; Liebmann M; Morgenstern M
    Nano Lett; 2010 Feb; 10(2):461-5. PubMed ID: 20058873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.
    Angelova P; Vieker H; Weber NE; Matei D; Reimer O; Meier I; Kurasch S; Biskupek J; Lorbach D; Wunderlich K; Chen L; Terfort A; Klapper M; Müllen K; Kaiser U; Gölzhäuser A; Turchanin A
    ACS Nano; 2013 Aug; 7(8):6489-97. PubMed ID: 23802686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescently labeled 1 nm thin nanomembranes.
    Nottbohm CT; Sopher R; Heilemann M; Sauer M; Gölzhäuser A
    J Biotechnol; 2010 Sep; 149(4):267-71. PubMed ID: 20138096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of buckling free ultrathin silicon membranes by direct bonding with thermal difference.
    Delachat F; Constancias C; Fournel F; Morales C; Le Drogoff B; Chaker M; Margot J
    ACS Nano; 2015; 9(4):3654-63. PubMed ID: 25789462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimensionality of Rolled-up Nanomembranes Controls Neural Stem Cell Migration Mechanism.
    Koch B; Meyer AK; Helbig L; Harazim SM; Storch A; Sanchez S; Schmidt OG
    Nano Lett; 2015 Aug; 15(8):5530-8. PubMed ID: 26161791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics.
    Wang L; Gao Y; Dai F; Kong D; Wang H; Sun P; Shi Z; Sheng X; Xu B; Yin L
    ACS Appl Mater Interfaces; 2019 May; 11(19):18013-18023. PubMed ID: 31010291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.
    Ko HC; Shin G; Wang S; Stoykovich MP; Lee JW; Kim DH; Ha JS; Huang Y; Hwang KC; Rogers JA
    Small; 2009 Dec; 5(23):2703-9. PubMed ID: 19866476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Straining nanomembranes via highly mismatched heteroepitaxial growth: InAs islands on compliant Si substrates.
    Deneke C; Malachias A; Rastelli A; Merces L; Huang M; Cavallo F; Schmidt OG; Lagally MG
    ACS Nano; 2012 Nov; 6(11):10287-95. PubMed ID: 23046451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid organic/inorganic molecular heterojunctions based on strained nanomembranes.
    Bof Bufon CC; Arias Espinoza JD; Thurmer DJ; Bauer M; Deneke C; Zschieschang U; Klauk H; Schmidt OG
    Nano Lett; 2011 Sep; 11(9):3727-33. PubMed ID: 21823680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schottky contact on ultra-thin silicon nanomembranes under light illumination.
    Song E; Si W; Cao R; Feng P; Mönch I; Huang G; Di Z; Schmidt OG; Mei Y
    Nanotechnology; 2014 Dec; 25(48):485201. PubMed ID: 25380078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.