BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 22514067)

  • 1. Refining structures against reflection rank: an alternative metric for electron crystallography.
    Eggeman AS; Midgley PA
    Acta Crystallogr A; 2012 May; 68(Pt 3):352-8. PubMed ID: 22514067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is precession electron diffraction kinematical? Part II A practical method to determine the optimum precession angle.
    Eggeman AS; White TA; Midgley PA
    Ultramicroscopy; 2010 Jun; 110(7):771-7. PubMed ID: 19897302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation.
    Palatinus L; Petříček V; Corrêa CA
    Acta Crystallogr A Found Adv; 2015 Mar; 71(Pt 2):235-44. PubMed ID: 25727873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure refinement from precession electron diffraction data.
    Palatinus L; Jacob D; Cuvillier P; Klementová M; Sinkler W; Marks LD
    Acta Crystallogr A; 2013 Mar; 69(Pt 2):171-88. PubMed ID: 23403968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient approach to characterize pseudo-merohedral twins by precession electron diffraction: application to the LaGaO(3) perovskite.
    Ji G; Morniroli JP; Auchterlonie GJ; Drennan J; Jacob D
    Ultramicroscopy; 2009 Sep; 109(10):1282-94. PubMed ID: 19576696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure solution with three-dimensional sets of precessed electron diffraction intensities.
    Gemmi M; Nicolopoulos S
    Ultramicroscopy; 2007; 107(6-7):483-94. PubMed ID: 17222513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data.
    Palatinus L; Corrêa CA; Steciuk G; Jacob D; Roussel P; Boullay P; Klementová M; Gemmi M; Kopeček J; Domeneghetti MC; Cámara F; Petříček V
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):740-51. PubMed ID: 26634732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid structure determination of a metal oxide from pseudo-kinematical electron diffraction data.
    Own CS; Sinkler W; Marks LD
    Ultramicroscopy; 2006 Jan; 106(2):114-22. PubMed ID: 16125847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precession electron diffraction 1: multislice simulation.
    Own CS; Marks LD; Sinkler W
    Acta Crystallogr A; 2006 Nov; 62(Pt 6):434-43. PubMed ID: 17057352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure refinement using Bloch-wave method for precession electron diffraction.
    Dudka AP; Avilov AS; Nicolopoulos S
    Ultramicroscopy; 2007; 107(6-7):474-82. PubMed ID: 17222976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quality of precession electron diffraction data is higher than necessary for structure solution of unknown crystalline phases.
    Klein H; David J
    Acta Crystallogr A; 2011 May; 67(Pt 3):297-302. PubMed ID: 21487189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A precession electron diffraction study of alpha, beta phases and Dauphiné twin in quartz.
    Jacob D; Cordier P
    Ultramicroscopy; 2010 Aug; 110(9):1166-77. PubMed ID: 20573452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination.
    Avilov A; Kuligin K; Nicolopoulos S; Nickolskiy M; Boulahya K; Portillo J; Lepeshov G; Sobolev B; Collette JP; Martin N; Robins AC; Fischione P
    Ultramicroscopy; 2007; 107(6-7):431-44. PubMed ID: 17258859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum entropy method and charge flipping, a powerful combination to visualize the true nature of structural disorder from in situ X-ray powder diffraction data.
    Samy A; Dinnebier RE; van Smaalen S; Jansen M
    Acta Crystallogr B; 2010 Apr; 66(Pt 2):184-95. PubMed ID: 20305352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio determination of the framework structure of the heavy-metal oxide Cs(x)Nb2.54W2.46O14 from 100 kV precession electron diffraction data.
    Weirich TE; Portillo J; Cox G; Hibst H; Nicolopoulos S
    Ultramicroscopy; 2006 Feb; 106(3):164-75. PubMed ID: 16137828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-matrix refinement of the protein crambin at 0.83 A and 130 K.
    Stec B; Zhou R; Teeter MM
    Acta Crystallogr D Biol Crystallogr; 1995 Sep; 51(Pt 5):663-81. PubMed ID: 15299796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical refinement with multipolar electron scattering factors.
    Olech B; Brázda P; Palatinus L; Dominiak PM
    IUCrJ; 2024 May; 11(Pt 3):309-324. PubMed ID: 38512772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refinement of the crystal structural parameters of La2/3Ca1/3MnO3 using quantitative convergent-beam electron diffraction.
    Feng F; Zhu J; Zhang A
    Acta Crystallogr A; 2005 Jul; 61(Pt 4):453-9. PubMed ID: 15972999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge density determination in icosahedral AlPdMn quasicrystal using quantitative convergent beam electron diffraction.
    Yu F; Zou H; Wang J; Wang R
    Micron; 2004; 35(6):411-8. PubMed ID: 15120124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pawley and Rietveld refinements using electron diffraction from L1₂-type intermetallic Au₃Fe₁-x nanocrystals during their in-situ order-disorder transition.
    Luo Z; Vasquez Y; Bondi JF; Schaak RE
    Ultramicroscopy; 2011 Jul; 111(8):1295-304. PubMed ID: 21864770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.