BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 22514091)

  • 41. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.
    Rossi L; Zhang W; Lombardini L; Ma X
    Environ Pollut; 2016 Dec; 219():28-36. PubMed ID: 27661725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.
    Rossi L; Zhang W; Ma X
    Environ Pollut; 2017 Oct; 229():132-138. PubMed ID: 28582676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes.
    Sibole JV; Cabot C; Poschenrieder C; Barceló J
    J Exp Bot; 2003 Sep; 54(390):2111-9. PubMed ID: 12925667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars.
    Chakraborty K; Bhaduri D; Meena HN; Kalariya K
    Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of Na
    Chuamnakthong S; Nampei M; Ueda A
    Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.).
    Li Z; Baldwin CM; Hu Q; Liu H; Luo H
    Plant Cell Environ; 2010 Feb; 33(2):272-89. PubMed ID: 19930128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions.
    James RA; Blake C; Byrt CS; Munns R
    J Exp Bot; 2011 May; 62(8):2939-47. PubMed ID: 21357768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes.
    Khan HA; Siddique KH; Munir R; Colmer TD
    J Plant Physiol; 2015 Jun; 182():1-12. PubMed ID: 26037693
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.
    Tavakkoli E; Rengasamy P; McDonald GK
    J Exp Bot; 2010 Oct; 61(15):4449-59. PubMed ID: 20713463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport.
    Jha D; Shirley N; Tester M; Roy SJ
    Plant Cell Environ; 2010 May; 33(5):793-804. PubMed ID: 20040066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.
    Bazihizina N; Colmer TD; Barrett-Lennard EG
    Ann Bot; 2009 Sep; 104(4):737-45. PubMed ID: 19556265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations.
    Tattini M; Montagni G; Traversi ML
    Tree Physiol; 2002 Apr; 22(6):403-12. PubMed ID: 11960765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.
    Agarie S; Shimoda T; Shimizu Y; Baumann K; Sunagawa H; Kondo A; Ueno O; Nakahara T; Nose A; Cushman JC
    J Exp Bot; 2007; 58(8):1957-67. PubMed ID: 17452753
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment.
    Debez A; Koyro HW; Grignon C; Abdelly C; Huchzermeyer B
    Physiol Plant; 2008 Jun; 133(2):373-85. PubMed ID: 18346075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress.
    Saadia M; Jamil A; Akram NA; Ashraf M
    Molecules; 2012 May; 17(5):5803-15. PubMed ID: 22592086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings.
    Aganchich B; Wahbi S; Loreto F; Centritto M
    Tree Physiol; 2009 May; 29(5):685-96. PubMed ID: 19324696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of Ca2+ on growth of Brassica campestris L. and B. juncea (L.) Czern & Coss under Na+ stress.
    Badr-uz-Zaman ; Salim M; Asghar R
    J Integr Plant Biol; 2010 Jun; 52(6):549-55. PubMed ID: 20590985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition.
    Gattward JN; Almeida AA; Souza JO; Gomes FP; Kronzucker HJ
    Physiol Plant; 2012 Nov; 146(3):350-62. PubMed ID: 22443491
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of salinity on zinc uptake by Brassica juncea.
    Novo LA; Covelo EF; González L
    Int J Phytoremediation; 2014; 16(7-12):704-18. PubMed ID: 24933880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis.
    Li C; Wei Z; Liang D; Zhou S; Li Y; Liu C; Ma F
    Plant Physiol Biochem; 2013 Sep; 70():164-73. PubMed ID: 23774378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.