These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 22514114)

  • 1. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale production of nanographene sheets with a controlled mesoporous architecture as high-performance electrochemical electrode materials.
    Zhang H; Zhang X; Sun X; Zhang D; Lin H; Wang C; Wang H; Ma Y
    ChemSusChem; 2013 Jun; 6(6):1084-90. PubMed ID: 23650181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.
    Zhang H; Yu X; Guo D; Qu B; Zhang M; Li Q; Wang T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7335-40. PubMed ID: 23751359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance.
    He S; Chen W
    Nanoscale; 2015 Apr; 7(16):6957-90. PubMed ID: 25522064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-doped graphene materials for supercapacitor applications.
    Lu Y; Huang Y; Zhang M; Chen Y
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1134-44. PubMed ID: 24749417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene.
    Zhang D; Zhang X; Chen Y; Wang C; Ma Y; Dong H; Jiang L; Meng Q; Hu W
    Phys Chem Chem Phys; 2012 Aug; 14(31):10899-903. PubMed ID: 22772748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.
    Qu B; Chen Y; Zhang M; Hu L; Lei D; Lu B; Li Q; Wang Y; Chen L; Wang T
    Nanoscale; 2012 Dec; 4(24):7810-6. PubMed ID: 23147355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.
    Wang H; Xu Z; Kohandehghan A; Li Z; Cui K; Tan X; Stephenson TJ; King'ondu CK; Holt CM; Olsen BC; Tak JK; Harfield D; Anyia AO; Mitlin D
    ACS Nano; 2013 Jun; 7(6):5131-41. PubMed ID: 23651213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry.
    Chen XM; Wu GH; Jiang YQ; Wang YR; Chen X
    Analyst; 2011 Nov; 136(22):4631-40. PubMed ID: 21975368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional metal-graphene-nanotube multifunctional hybrid materials.
    Yan Z; Ma L; Zhu Y; Lahiri I; Hahm MG; Liu Z; Yang S; Xiang C; Lu W; Peng Z; Sun Z; Kittrell C; Lou J; Choi W; Ajayan PM; Tour JM
    ACS Nano; 2013 Jan; 7(1):58-64. PubMed ID: 23194106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
    Yoon Y; Lee K; Lee H
    Nanotechnology; 2016 Apr; 27(17):172001. PubMed ID: 26988574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.