BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22514261)

  • 1. Standardizing an in vitro procedure for the evaluation of the antimicrobial activity of wound dressings and the assessment of three wound dressings.
    Tkachenko O; Karas JA
    J Antimicrob Chemother; 2012 Jul; 67(7):1697-700. PubMed ID: 22514261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial efficacy of the silver wound dressing Biatain Ag in a disc carrier test simulating wound secretion.
    Ebert M; Assadian O; Hübner NO; Koburger T; Kramer A; ;
    Skin Pharmacol Physiol; 2011; 24(6):337-41. PubMed ID: 21832866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficacy of silver dressings and antibiotics on MRSA and MSSA isolated from burn patients.
    Percival SL; Thomas JG; Slone W; Linton S; Corum L; Okel T
    Wound Repair Regen; 2011 Nov; 19(6):767-74. PubMed ID: 22092847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro test of the efficacy of silver-containing wound dressings against Staphylococcus aureus and Pseudomonas aeruginosa in simulated wound fluid.
    Said J; Dodoo CC; Walker M; Parsons D; Stapleton P; Beezer AE; Gaisford S
    Int J Pharm; 2014 Feb; 462(1-2):123-8. PubMed ID: 24374221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of flow cytometry to compare the antimicrobial efficacy of silver-containing wound dressings against planktonic Staphylococcus aureus and Pseudomonas aeruginosa.
    Percival SL; Slone W; Linton S; Okel T; Corum L; Thomas JG
    Wound Repair Regen; 2011; 19(3):436-41. PubMed ID: 21518089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis.
    Rembe JD; Fromm-Dornieden C; Böhm J; Stuermer EK
    Wound Repair Regen; 2018 Jan; 26(1):27-35. PubMed ID: 29363857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the antimicrobial effects of four silver-containing dressings on three organisms.
    Thomas S; McCubbin P
    J Wound Care; 2003 Mar; 12(3):101-7. PubMed ID: 12677872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy.
    Gallant-Behm CL; Yin HQ; Liu S; Heggers JP; Langford RE; Olson ME; Hart DA; Burrell RE
    Wound Repair Regen; 2005; 13(4):412-21. PubMed ID: 16008731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver(®).
    Boonkaew B; Kempf M; Kimble R; Supaphol P; Cuttle L
    Burns; 2014 Feb; 40(1):89-96. PubMed ID: 23790588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing.
    Adomavičiūtė E; Stanys S; Žilius M; Juškaitė V; Pavilonis A; Briedis V
    Biomed Res Int; 2016; 2016():4648287. PubMed ID: 26981531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAP-containing dressings exhibit sustained antimicrobial effects over 7 days in vitro.
    Wiegand C; Abel M; Muldoon J; Ruth P; Hipler UC
    J Wound Care; 2013 Mar; 22(3):120, 122-4, 126-7. PubMed ID: 23665730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities.
    Hill KE; Malic S; McKee R; Rennison T; Harding KG; Williams DW; Thomas DW
    J Antimicrob Chemother; 2010 Jun; 65(6):1195-206. PubMed ID: 20378671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ag5IO6: novel antibiofilm activity of a silver compound with application to medical devices.
    Incani V; Omar A; Prosperi-Porta G; Nadworny P
    Int J Antimicrob Agents; 2015 Jun; 45(6):586-93. PubMed ID: 25604278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a bi-layer wound dressing for burn care. II. In vitro and in vivo bactericidal properties.
    Martineau L; Shek PN
    Burns; 2006 Mar; 32(2):172-9. PubMed ID: 16455202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of antibacterial activity against Methicillin-Resistant Staphylococcus aureus and gram-negative organisms for antimicrobial compounds in a unique composite wound dressing.
    Echague CG; Hair PS; Cunnion KM
    Adv Skin Wound Care; 2010 Sep; 23(9):406-13. PubMed ID: 20729646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the effect of an antimicrobial wound dressing on biofilms.
    Percival SL; Bowler P; Woods EJ
    Wound Repair Regen; 2008; 16(1):52-7. PubMed ID: 18211579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics.
    Elsner JJ; Berdicevsky I; Zilberman M
    Acta Biomater; 2011 Jan; 7(1):325-36. PubMed ID: 20643231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualisation of bacterial sequestration and bactericidal activity within hydrating Hydrofiber wound dressings.
    Newman GR; Walker M; Hobot JA; Bowler PG
    Biomaterials; 2006 Mar; 27(7):1129-39. PubMed ID: 16120458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial action and efficiency of silver-loaded zeolite X.
    Kwakye-Awuah B; Williams C; Kenward MA; Radecka I
    J Appl Microbiol; 2008 May; 104(5):1516-24. PubMed ID: 18179543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production.
    Thorn RM; Nelson SM; Greenman J
    Antimicrob Agents Chemother; 2007 Sep; 51(9):3217-24. PubMed ID: 17638701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.