These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22514313)

  • 1. Parallel coding of first- and second-order stimulus attributes by midbrain electrosensory neurons.
    McGillivray P; Vonderschen K; Fortune ES; Chacron MJ
    J Neurosci; 2012 Apr; 32(16):5510-24. PubMed ID: 22514313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations.
    Huang CG; Chacron MJ
    J Neurosci; 2016 Sep; 36(38):9859-72. PubMed ID: 27656024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Baseline Variability Gives Rise to Lower Detection Thresholds in Midbrain than Hindbrain Electrosensory Neurons.
    Kim C; Chacron MJ
    Neuroscience; 2020 Nov; 448():43-54. PubMed ID: 32926952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons.
    Metzen MG; Chacron MJ
    J Neurosci; 2021 Apr; 41(17):3822-3841. PubMed ID: 33687962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish.
    Vonderschen K; Chacron MJ
    J Neurophysiol; 2011 Dec; 106(6):3102-18. PubMed ID: 21940609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.
    Aumentado-Armstrong T; Metzen MG; Sproule MK; Chacron MJ
    PLoS Comput Biol; 2015 Oct; 11(10):e1004430. PubMed ID: 26474395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species.
    Martinez D; Metzen MG; Chacron MJ
    J Neurophysiol; 2016 Dec; 116(6):2909-2921. PubMed ID: 27683890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phantoms in the brain: ambiguous representations of stimulus amplitude and timing in weakly electric fish.
    Carlson BA
    J Physiol Paris; 2008; 102(4-6):209-22. PubMed ID: 18984041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambiguous encoding of stimuli by primary sensory afferents causes a lack of independence in the perception of multiple stimulus attributes.
    Carlson BA; Kawasaki M
    J Neurosci; 2006 Sep; 26(36):9173-83. PubMed ID: 16957074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural code for looming and receding motion is distributed over a population of electrosensory ON and OFF contrast cells.
    Clarke SE; Longtin A; Maler L
    J Neurosci; 2014 Apr; 34(16):5583-94. PubMed ID: 24741048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding of envelopes by correlated but not single-neuron activity requires neural variability.
    Metzen MG; Jamali M; Carriot J; Ávila-Ǻkerberg O; Cullen KE; Chacron MJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4791-6. PubMed ID: 25825717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the time course of short-term depression across receptive fields are correlated with directional selectivity in electrosensory neurons.
    Chacron MJ; Toporikova N; Fortune ES
    J Neurophysiol; 2009 Dec; 102(6):3270-9. PubMed ID: 19793877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.
    Goense JB; Ratnam R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Oct; 189(10):741-59. PubMed ID: 12920548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending pathways generate perception of and neural responses to weak sensory input.
    Metzen MG; Huang CG; Chacron MJ
    PLoS Biol; 2018 Jun; 16(6):e2005239. PubMed ID: 29939982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
    Savard M; Krahe R; Chacron MJ
    Neuroscience; 2011 Jan; 172():270-84. PubMed ID: 21035523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation to second order stimulus features by electrosensory neurons causes ambiguity.
    Zhang ZD; Chacron MJ
    Sci Rep; 2016 Jun; 6():28716. PubMed ID: 27349635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic population coding of natural communication stimuli by hindbrain electrosensory neurons.
    Wang Z; Chacron MJ
    Sci Rep; 2021 May; 11(1):10840. PubMed ID: 34035395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time disparity sensitive behavior and its neural substrates of a pulse-type gymnotiform electric fish, Brachyhypopomus gauderio.
    Matsushita A; Pyon G; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jul; 199(7):583-99. PubMed ID: 23250197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.