BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22514324)

  • 21. Striatal dopamine influences the default mode network to affect shifting between object features.
    Dang LC; Donde A; Madison C; O'Neil JP; Jagust WJ
    J Cogn Neurosci; 2012 Sep; 24(9):1960-70. PubMed ID: 22640392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Striatal activation as a neural link between cognitive and perceptual flexibility.
    Sekutowicz M; Schmack K; Steimke R; Paschke L; Sterzer P; Walter H; Stelzel C
    Neuroimage; 2016 Nov; 141():393-398. PubMed ID: 27474521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finding parallels in fronto-striatal organization.
    Desrochers TM; Badre D
    Trends Cogn Sci; 2012 Aug; 16(8):407-8. PubMed ID: 22749916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing.
    Melrose RJ; Tinaz S; Castelo JM; Courtney MG; Stern CE
    Behav Brain Res; 2008 Apr; 188(2):337-47. PubMed ID: 18242723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study.
    Leitão J; Thielscher A; Werner S; Pohmann R; Noppeney U
    Cereb Cortex; 2013 Apr; 23(4):873-84. PubMed ID: 22490546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mobilization of Medial and Lateral Frontal-Striatal Circuits in Cocaine Users and Controls: An Interleaved TMS/BOLD Functional Connectivity Study.
    Hanlon CA; Dowdle LT; Moss H; Canterberry M; George MS
    Neuropsychopharmacology; 2016 Dec; 41(13):3032-3041. PubMed ID: 27374278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making.
    Ross RS; Sherrill KR; Stern CE
    Brain Res; 2011 Nov; 1423():53-66. PubMed ID: 22000080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.
    Fuentes-Claramonte P; Ávila C; Rodríguez-Pujadas A; Ventura-Campos N; Bustamante JC; Costumero V; Rosell-Negre P; Barrós-Loscertales A
    PLoS One; 2015; 10(4):e0123073. PubMed ID: 25875640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resting-state frontostriatal functional connectivity in Parkinson's disease-related apathy.
    Baggio HC; Segura B; Garrido-Millan JL; Marti MJ; Compta Y; Valldeoriola F; Tolosa E; Junque C
    Mov Disord; 2015 Apr; 30(5):671-9. PubMed ID: 25600482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia.
    Quidé Y; Morris RW; Shepherd AM; Rowland JE; Green MJ
    Schizophr Res; 2013 Nov; 150(2-3):468-75. PubMed ID: 24016726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impairment of executive performance after transcranial magnetic modulation of the left dorsal frontal-striatal circuit.
    van den Heuvel OA; Van Gorsel HC; Veltman DJ; Van Der Werf YD
    Hum Brain Mapp; 2013 Feb; 34(2):347-55. PubMed ID: 22076808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum.
    Emmons EB; De Corte BJ; Kim Y; Parker KL; Matell MS; Narayanan NS
    J Neurosci; 2017 Sep; 37(36):8718-8733. PubMed ID: 28821670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resting state connectivity in alcohol dependent patients and the effect of repetitive transcranial magnetic stimulation.
    Jansen JM; van Wingen G; van den Brink W; Goudriaan AE
    Eur Neuropsychopharmacol; 2015 Dec; 25(12):2230-9. PubMed ID: 26481907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents.
    Somerville LH; Hare T; Casey BJ
    J Cogn Neurosci; 2011 Sep; 23(9):2123-34. PubMed ID: 20809855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.
    Jahfari S; Waldorp L; van den Wildenberg WP; Scholte HS; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2011 May; 31(18):6891-9. PubMed ID: 21543619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HIV infection is associated with attenuated frontostriatal intrinsic connectivity: a preliminary study.
    Ipser JC; Brown GG; Bischoff-Grethe A; Connolly CG; Ellis RJ; Heaton RK; Grant I;
    J Int Neuropsychol Soc; 2015 Mar; 21(3):203-13. PubMed ID: 25824201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging.
    Liu H; Qin W; Li W; Fan L; Wang J; Jiang T; Yu C
    J Neurosci; 2013 Apr; 33(16):6782-90. PubMed ID: 23595737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.
    Christakou A; Halari R; Smith AB; Ifkovits E; Brammer M; Rubia K
    Neuroimage; 2009 Oct; 48(1):223-36. PubMed ID: 19580877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.