These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 22514339)
1. Extensive mutagenesis of the conserved box E motif in duck hepatitis B virus P protein reveals multiple functions in replication and a common structure with the primer grip in HIV-1 reverse transcriptase. Wang YX; Luo C; Zhao D; Beck J; Nassal M J Virol; 2012 Jun; 86(12):6394-407. PubMed ID: 22514339 [TBL] [Abstract][Full Text] [Related]
2. TP-RT domain interactions of duck hepatitis B virus reverse transcriptase in cis and in trans during protein-primed initiation of DNA synthesis in vitro. Boregowda RK; Adams C; Hu J J Virol; 2012 Jun; 86(12):6522-36. PubMed ID: 22514346 [TBL] [Abstract][Full Text] [Related]
3. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases. Beck J; Vogel M; Nassal M Nucleic Acids Res; 2002 Apr; 30(7):1679-87. PubMed ID: 11917030 [TBL] [Abstract][Full Text] [Related]
4. Reconstitution of a functional duck hepatitis B virus replication initiation complex from separate reverse transcriptase domains expressed in Escherichia coli. Beck J; Nassal M J Virol; 2001 Aug; 75(16):7410-9. PubMed ID: 11462013 [TBL] [Abstract][Full Text] [Related]
5. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis. Chen Y; Robinson WS; Marion PL J Virol; 1994 Aug; 68(8):5232-8. PubMed ID: 8035519 [TBL] [Abstract][Full Text] [Related]
6. [An undamaged bulge in epsilon is essential for initiating priming of DHBV reverse transcriptase]. Hu KH; Feng H; Li H Bing Du Xue Bao; 2009 Jul; 25(4):296-302. PubMed ID: 19769164 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir. Walsh AW; Langley DR; Colonno RJ; Tenney DJ PLoS One; 2010 Feb; 5(2):e9195. PubMed ID: 20169198 [TBL] [Abstract][Full Text] [Related]
8. A conserved arginine residue in the terminal protein domain of hepatitis B virus polymerase is critical for RNA pre-genome encapsidation. Shin YC; Park S; Ryu WS J Gen Virol; 2011 Aug; 92(Pt 8):1809-1816. PubMed ID: 21525211 [TBL] [Abstract][Full Text] [Related]
9. Priming of duck hepatitis B virus reverse transcription in vitro: premature termination of primer DNA induced by the 5'-triphosphate of fialuridine. Staschke KA; Colacino JM J Virol; 1994 Dec; 68(12):8265-9. PubMed ID: 7525986 [TBL] [Abstract][Full Text] [Related]
10. Relaxing the restricted structural dynamics in the human hepatitis B virus RNA encapsidation signal enables replication initiation in vitro. Dörnbrack K; Beck J; Nassal M PLoS Pathog; 2022 Mar; 18(3):e1010362. PubMed ID: 35259189 [TBL] [Abstract][Full Text] [Related]
11. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. Hu J; Flores D; Toft D; Wang X; Nguyen D J Virol; 2004 Dec; 78(23):13122-31. PubMed ID: 15542664 [TBL] [Abstract][Full Text] [Related]
12. C-terminal substitution of HBV core proteins with those from DHBV reveals that arginine-rich 167RRRSQSPRR175 domain is critical for HBV replication. Jung J; Kim HY; Kim T; Shin BH; Park GS; Park S; Chwae YJ; Shin HJ; Kim K PLoS One; 2012; 7(7):e41087. PubMed ID: 22911745 [TBL] [Abstract][Full Text] [Related]
13. Biochemical and Structural Properties of Entecavir-Resistant Hepatitis B Virus Polymerase with L180M/M204V Mutations. Nakajima S; Watashi K; Kato T; Muramatsu M; Wakita T; Tamura N; Hattori SI; Maeda K; Mitsuya H; Yasutake Y; Toyoda T J Virol; 2021 Jul; 95(16):e0240120. PubMed ID: 34076480 [TBL] [Abstract][Full Text] [Related]
14. A Tyr residue in the reverse transcriptase domain can mimic the protein-priming Tyr residue in the terminal protein domain of a hepadnavirus P protein. Beck J; Nassal M J Virol; 2011 Aug; 85(15):7742-53. PubMed ID: 21593158 [TBL] [Abstract][Full Text] [Related]
15. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of reverse transcription. Hu K; Beck J; Nassal M Nucleic Acids Res; 2004; 32(14):4377-89. PubMed ID: 15314208 [TBL] [Abstract][Full Text] [Related]
16. A high level of mutation tolerance in the multifunctional sequence encoding the RNA encapsidation signal of an avian hepatitis B virus and slow evolution rate revealed by in vivo infection. Schmid B; Rösler C; Nassal M J Virol; 2011 Sep; 85(18):9300-13. PubMed ID: 21752921 [TBL] [Abstract][Full Text] [Related]
17. Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase. Wang X; Qian X; Guo HC; Hu J J Virol; 2003 Apr; 77(8):4471-80. PubMed ID: 12663754 [TBL] [Abstract][Full Text] [Related]
18. Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to epsilon RNA binding. Stahl M; Beck J; Nassal M J Virol; 2007 Dec; 81(24):13354-64. PubMed ID: 17913810 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming. Jones SA; Clark DN; Cao F; Tavis JE; Hu J J Virol; 2014 Feb; 88(3):1564-72. PubMed ID: 24227865 [TBL] [Abstract][Full Text] [Related]
20. Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. Chang LJ; Hirsch RC; Ganem D; Varmus HE J Virol; 1990 Nov; 64(11):5553-8. PubMed ID: 1698997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]