These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22514635)

  • 1. Modelling and analysis of central metabolism operating regulatory interactions in salt stress conditions in a L-carnitine overproducing E. coli strain.
    Santos G; Hormiga JA; Arense P; Cánovas M; Torres NV
    PLoS One; 2012; 7(4):e34533. PubMed ID: 22514635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt stress effects on the central and carnitine metabolisms of Escherichia coli.
    Cánovas M; Bernal V; Sevilla A; Torroglosa T; Iborra JL
    Biotechnol Bioeng; 2007 Mar; 96(4):722-37. PubMed ID: 16894634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-carnitine metabolization and osmotic stress response in Escherichia coli.
    Jung H; Jung K; Kleber HP
    J Basic Microbiol; 1990; 30(6):409-13. PubMed ID: 2280345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redirecting metabolic fluxes through cofactor engineering: Role of CoA-esters pool during L(-)-carnitine production by Escherichia coli.
    Bernal V; Masdemont B; Arense P; Cánovas M; Iborra JL
    J Biotechnol; 2007 Oct; 132(2):110-7. PubMed ID: 17617487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(-)-carnitine by resting cells of Escherichia coli.
    Cánovas M; Torroglosa T; Kleber HP; Iborra JL
    J Basic Microbiol; 2003; 43(4):259-68. PubMed ID: 12872307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions.
    Calvani M; Reda E; Arrigoni-Martelli E
    Basic Res Cardiol; 2000 Apr; 95(2):75-83. PubMed ID: 10826498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli.
    Yang YT; Bennett GN; San KY
    Metab Eng; 2001 Apr; 3(2):115-23. PubMed ID: 11289788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the dynamic signaling pathway involved in the cAMP mediated induction of l-carnitine biosynthesis in E. coli cultures.
    Hormiga J; González-Alcón C; Sevilla A; Cánovas M; Torres NV
    Mol Biosyst; 2010 Apr; 6(4):699-710. PubMed ID: 20237648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion.
    Yang YT; San KY; Bennett GN
    Metab Eng; 1999 Apr; 1(2):141-52. PubMed ID: 10935927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress.
    Varela C; Agosin E; Baez M; Klapa M; Stephanopoulos G
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):547-55. PubMed ID: 12536254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
    Moxley WC; Eiteman MA
    Appl Environ Microbiol; 2021 Jun; 87(13):e0048721. PubMed ID: 33863707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli.
    Yang YT; Bennett GN; San KY
    Biotechnol Bioeng; 1999 Nov; 65(3):291-7. PubMed ID: 10486127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Isolation of high osmotic-tolerant mutants of Escherichia coli for succinic acid production by metabolic evolution].
    Zhang C; Gou D; Mei J; Liu R; Ma J; Chen K; Zhu J; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2012 Nov; 28(11):1337-45. PubMed ID: 23457786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Link between primary and secondary metabolism in the biotransformation of trimethylammonium compounds by escherichia coli.
    Cánovas M; Bernal V; Torroglosa T; Ramirez JL; Iborra JL
    Biotechnol Bioeng; 2003 Dec; 84(6):686-99. PubMed ID: 14595781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli.
    Wittmann C; Weber J; Betiku E; Krömer J; Böhm D; Rinas U
    J Biotechnol; 2007 Dec; 132(4):375-84. PubMed ID: 17689798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate.
    Utrilla J; Gosset G; Martinez A
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1057-62. PubMed ID: 19471981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens.
    Métris A; George SM; Ropers D
    Int J Food Microbiol; 2017 Jan; 240():63-74. PubMed ID: 27377009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model of central and trimethylammonium metabolism for optimizing L-carnitine production by E. coli.
    Sevilla A; Schmid JW; Mauch K; Iborra JL; Reuss M; Cánovas M
    Metab Eng; 2005; 7(5-6):401-25. PubMed ID: 16098782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of energetic coenzyme pools in the production of L-carnitine by Escherichia coli.
    Cánovas M; Sevilla A; Bernal V; Leal R; Iborra JL
    Metab Eng; 2006 Nov; 8(6):603-18. PubMed ID: 16904359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli.
    El-Mansi M
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.