BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22514679)

  • 41. When ontogeny reveals what phylogeny hides: gain and loss of horns during development and evolution of horned beetles.
    Moczek AP; Cruickshank TE; Shelby A
    Evolution; 2006 Nov; 60(11):2329-41. PubMed ID: 17236424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density.
    Buzatto BA; Tomkins JL; Simmons LW
    BMC Evol Biol; 2012 Jul; 12():118. PubMed ID: 22823456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhinoceros beetle horn development reveals deep parallels with dung beetles.
    Ohde T; Morita S; Shigenobu S; Morita J; Mizutani T; Gotoh H; Zinna RA; Nakata M; Ito Y; Wada K; Kitano Y; Yuzaki K; Toga K; Mase M; Kadota K; Rushe J; Lavine LC; Emlen DJ; Niimi T
    PLoS Genet; 2018 Oct; 14(10):e1007651. PubMed ID: 30286074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA methylation as a mechanism of nutritional plasticity: limited support from horned beetles.
    Snell-Rood EC; Troth A; Moczek AP
    J Exp Zool B Mol Dev Evol; 2013 Jan; 320(1):22-34. PubMed ID: 22951993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. No evidence for condition-dependent expression of male genitalia in the dung beetle Onthophagus taurus.
    House CM; Simmons LW
    J Evol Biol; 2007 Jul; 20(4):1322-32. PubMed ID: 17584227
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Signals of selection in conditionally expressed genes in the diversification of three horned beetle species.
    Pespeni MH; Ladner JT; Moczek AP
    J Evol Biol; 2017 Sep; 30(9):1644-1657. PubMed ID: 28379613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of Drosophila FOXO regulates growth and can phenocopy starvation.
    Kramer JM; Davidge JT; Lockyer JM; Staveley BE
    BMC Dev Biol; 2003 Jul; 3():5. PubMed ID: 12844367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ontogeny of sexual size dimorphism in the hornless rose chafer Pachnoda marginata (Coleoptera: Scarabaeidae: Cetoniinae).
    Vendl T; Kratochvíl L; Šípek P
    Zoology (Jena); 2016 Dec; 119(6):481-488. PubMed ID: 27470929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis.
    Koyama T; Rodrigues MA; Athanasiadis A; Shingleton AW; Mirth CK
    Elife; 2014 Nov; 3():. PubMed ID: 25421296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The genetics of primary and secondary sexual character trade-offs in a horned beetle.
    House CM; Simmons LW
    J Evol Biol; 2012 Sep; 25(9):1711-7. PubMed ID: 22775558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shape--but not size--codivergence between male and female copulatory structures in Onthophagus beetles.
    Macagno AL; Pizzo A; Parzer HF; Palestrini C; Rolando A; Moczek AP
    PLoS One; 2011; 6(12):e28893. PubMed ID: 22194942
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry.
    Rohner PT; Hu Y; Moczek AP
    Evol Dev; 2024 Jan; 26(1):e12464. PubMed ID: 38041612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insulin-insensitivity of male genitalia maintains reproductive success in Drosophila.
    Dreyer AP; Shingleton AW
    Biol Lett; 2019 May; 15(5):20190057. PubMed ID: 31088279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manipulation of insulin signaling phenocopies evolution of a host-associated polyphenism.
    Fawcett MM; Parks MC; Tibbetts AE; Swart JS; Richards EM; Vanegas JC; Cenzer M; Crowley L; Simmons WR; Hou WS; Angelini DR
    Nat Commun; 2018 Apr; 9(1):1699. PubMed ID: 29703888
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photoperiod controls wing polyphenism in a water strider independently of insulin receptor signalling.
    Gudmunds E; Narayanan S; Lachivier E; Duchemin M; Khila A; Husby A
    Proc Biol Sci; 2022 Apr; 289(1973):20212764. PubMed ID: 35473377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diverse developmental mechanisms contribute to different levels of diversity in horned beetles.
    Moczek AP; Nagy LM
    Evol Dev; 2005; 7(3):175-85. PubMed ID: 15876190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sexual dimorphism and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle.
    Zinna R; Emlen D; Lavine LC; Johns A; Gotoh H; Niimi T; Dworkin I
    Mol Ecol; 2018 Dec; 27(24):5049-5072. PubMed ID: 30357984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trade-offs during the development of primary and secondary sexual traits in a horned beetle.
    Moczek AP; Nijhout HF
    Am Nat; 2004 Feb; 163(2):184-91. PubMed ID: 14970921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene discovery in the horned beetle Onthophagus taurus.
    Choi JH; Kijimoto T; Snell-Rood E; Tae H; Yang Y; Moczek AP; Andrews J
    BMC Genomics; 2010 Dec; 11():703. PubMed ID: 21156066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner.
    Wasik BR; Rose DJ; Moczek AP
    Evol Dev; 2010; 12(4):353-62. PubMed ID: 20618431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.