BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22515341)

  • 21. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.
    Fazal S; Paul-Prasanth B; Nair SV; Menon D
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28260-28272. PubMed ID: 28789518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles.
    Cardinal J; Klune JR; Chory E; Jeyabalan G; Kanzius JS; Nalesnik M; Geller DA
    Surgery; 2008 Aug; 144(2):125-32. PubMed ID: 18656617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury.
    He X; Wolkers WF; Crowe JH; Swanlund DJ; Bischof JC
    Ann Biomed Eng; 2004 Oct; 32(10):1384-98. PubMed ID: 15535056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells.
    Jose A; Surendran M; Fazal S; Prasanth BP; Menon D
    Colloids Surf B Biointerfaces; 2018 May; 165():371-380. PubMed ID: 29525697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold-Gold Sulfide nanoparticles intensify thermal effects of radio frequency electromagnetic field.
    Sadeghi HR; Toosi MH; Soudmand S; Sadoughi HR; Sazgarnia A
    J Exp Ther Oncol; 2014; 10(4):285-91. PubMed ID: 25509984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Presence of Gold Nanoparticles in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia.
    Chen CC; Chen CL; Li JJ; Chen YY; Wang CY; Wang YS; Chi KH; Wang HE
    ACS Appl Bio Mater; 2019 Aug; 2(8):3573-3581. PubMed ID: 35030743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of in vivo bioluminescence and MRI to determine hyperthermia-induced changes in luciferase activity under the control of an hsp70 promoter.
    Hundt W; Schink C; Steinbach S; O'Connell-Rodwell CE; Mayer D; Burbelko M; Kießling A; Guccione S
    NMR Biomed; 2012 Dec; 25(12):1378-91. PubMed ID: 22566294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation.
    Szlachcic A; Pala K; Zakrzewska M; Jakimowicz P; Wiedlocha A; Otlewski J
    Int J Nanomedicine; 2012; 7():5915-27. PubMed ID: 23226697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Validation of Experimental Setup for Cell Spheroid Radiofrequency-Induced Heating.
    Androulakis I; Ferrero R; van Oossanen R; Manzin A; Denkova AG; Djanashvili K; Nadar R; van Rhoon GC
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of alkylresorcinols on thermal denaturation and refolding of bacterial luciferase and synthesis of heat shock proteins revealed in the luminescent molecular and cellular test systems].
    Deryabin DG; Gryazeva IV; Davydova OK; El'-Registan GI
    Mikrobiologiia; 2014; 83(6):640-52. PubMed ID: 25941713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields.
    Raoof M; Cisneros BT; Corr SJ; Palalon F; Curley SA; Koshkina NV
    PLoS One; 2013; 8(7):e68506. PubMed ID: 23861912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HSP27 phosphorylation increases after 45 degrees C or 41 degrees C heat shocks but not after non-thermal TDMA or GSM exposures.
    Vanderwaal RP; Cha B; Moros EG; Roti Roti JL
    Int J Hyperthermia; 2006 Sep; 22(6):507-19. PubMed ID: 16971370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxaliplatin-resistant colorectal cancer models for nanoparticle hyperthermia.
    McCarthy B; Singh R; Levi-Polyachenko N
    Int J Hyperthermia; 2021; 38(1):152-164. PubMed ID: 33576281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of thermal therapy in a prostate cancer model using a wet electrode radiofrequency probe.
    Bhowmick S; Swanlund DJ; Coad JE; Lulloff L; Hoey MF; Bischof JC
    J Endourol; 2001 Aug; 15(6):629-40. PubMed ID: 11552790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Could FA-PG-SPIONs act as a hyperthermia sensitizing agent? An in vitro study.
    Fakhimikabir H; Tavakoli MB; Zarrabi A; Amouheidari A; Rahgozar S
    J Therm Biol; 2018 Dec; 78():73-83. PubMed ID: 30509670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiofrequency capacitive hyperthermia for deep-seated tumors. II. Effects of thermoradiotherapy.
    Hiraoka M; Jo S; Akuta K; Nishimura Y; Takahashi M; Abe M
    Cancer; 1987 Jul; 60(1):128-35. PubMed ID: 3581027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.