BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22515345)

  • 1. Temperature superposition for fast computation of 3D temperature distributions during optimization and planning of interstitial ultrasound hyperthermia treatments.
    Salgaonkar VA; Prakash P; Diederich CJ
    Int J Hyperthermia; 2012; 28(3):235-49. PubMed ID: 22515345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma.
    Wootton JH; Hsu IC; Diederich CJ
    Med Phys; 2011 Feb; 38(2):598-611. PubMed ID: 21452697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer.
    Wootton JH; Prakash P; Hsu IC; Diederich CJ
    Phys Med Biol; 2011 Jul; 56(13):3967-84. PubMed ID: 21666290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy.
    Tyréus PD; Diederich CJ
    Phys Med Biol; 2002 Apr; 47(7):1073-89. PubMed ID: 11996056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catheter-based ultrasound hyperthermia with HDR brachytherapy for treatment of locally advanced cancer of the prostate and cervix.
    Diederich CJ; Wootton J; Prakash P; Salgaonkar V; Juang T; Scott S; Chen X; Cunha A; Pouliot J; Hsu IC
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():79010O. PubMed ID: 25076820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array.
    Salgaonkar VA; Prakash P; Rieke V; Ozhinsky E; Plata J; Kurhanewicz J; Hsu IC; Diederich CJ
    Med Phys; 2014 Mar; 41(3):033301. PubMed ID: 24593742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of using interstitial ultrasound for intradiscal thermal therapy: a study in human cadaver lumbar discs.
    Nau WH; Diederich CJ; Shu R
    Phys Med Biol; 2005 Jun; 50(12):2807-21. PubMed ID: 15930604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method.
    Reynoso FJ; Lee CD; Cheong SK; Cho SH
    Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intradiscal thermal therapy using interstitial ultrasound: an in vivo investigation in ovine cervical spine.
    Nau WH; Diederich CJ; Shu R; Kinsey A; Bass E; Lotz J; Hu S; Simko J; Ferrier W; Sutton J; Attawia M; Pellegrino R
    Spine (Phila Pa 1976); 2007 Mar; 32(5):503-11. PubMed ID: 17334283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catheter-based ultrasound devices and MR thermal monitoring for conformal prostate thermal therapy.
    Diederich CJ; Nau WH; Kinsey A; Ross T; Wootton J; Juang T; Butts-Pauly K; Rieke V; Chen J; Bouley DM; Sommer G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3664-8. PubMed ID: 19163505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing ultrasound focus distributions for hyperthermia.
    Lalonde RJ; Hunt JW
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):981-90. PubMed ID: 8582728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of 3-D conformal MRI-guided transurethral ultrasound therapy of the prostate: theoretical simulations.
    Burtnyk M; Chopra R; Bronskill MJ
    Int J Hyperthermia; 2009 Mar; 25(2):116-31. PubMed ID: 19337912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia.
    Zubair M; Adams MS; Diederich CJ
    Int J Hyperthermia; 2021 Aug; 38(1):1188-1204. PubMed ID: 34376103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catheter-based ultrasound applicators for selective thermal ablation: progress towards MRI-guided applications in prostate.
    Diederich CJ; Nau WH; Ross AB; Tyreus PD; Butts K; Rieke V; Sommer G
    Int J Hyperthermia; 2004 Nov; 20(7):739-56. PubMed ID: 15675669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial ultrasound heating applicator for MR-guided thermal therapy.
    Chopra R; Luginbuhl C; Weymouth AJ; Foster FS; Bronskill MJ
    Phys Med Biol; 2001 Dec; 46(12):3133-45. PubMed ID: 11768496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.