BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22516721)

  • 1. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase.
    Rishavy MA; Berkner KL
    Adv Nutr; 2012 Mar; 3(2):135-48. PubMed ID: 22516721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin K-dependent carboxylation.
    Berkner KL
    Vitam Horm; 2008; 78():131-56. PubMed ID: 18374193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation.
    Rishavy MA; Berkner KL
    Biochemistry; 2008 Sep; 47(37):9836-46. PubMed ID: 18717596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vitamin K-dependent carboxylase.
    Berkner KL
    Annu Rev Nutr; 2005; 25():127-49. PubMed ID: 16011462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model for vitamin K-dependent carboxylation: the catalytic base that deprotonates vitamin K hydroquinone is not Cys but an activated amine.
    Rishavy MA; Pudota BN; Hallgren KW; Qian W; Yakubenko AV; Song JH; Runge KW; Berkner KL
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13732-7. PubMed ID: 15365175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vitamin K-dependent carboxylase has been acquired by Leptospira pathogens and shows altered activity that suggests a role other than protein carboxylation.
    Rishavy MA; Hallgren KW; Yakubenko AV; Zuerner RL; Runge KW; Berkner KL
    J Biol Chem; 2005 Oct; 280(41):34870-7. PubMed ID: 16061481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tethered processivity of the vitamin K-dependent carboxylase: factor IX is efficiently modified in a mechanism which distinguishes Gla's from Glu's and which accounts for comprehensive carboxylation in vivo.
    Stenina O; Pudota BN; McNally BA; Hommema EL; Berkner KL
    Biochemistry; 2001 Aug; 40(34):10301-9. PubMed ID: 11513608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vitamin K-dependent carboxylase.
    Berkner KL
    J Nutr; 2000 Aug; 130(8):1877-80. PubMed ID: 10917896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin K-dependent gamma-glutamylcarboxylation: an ancient posttranslational modification.
    Bandyopadhyay PK
    Vitam Horm; 2008; 78():157-84. PubMed ID: 18374194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin K-dependent carboxylation of the carboxylase.
    Berkner KL; Pudota BN
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):466-71. PubMed ID: 9435215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brønsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation.
    Rishavy MA; Hallgren KW; Yakubenko AV; Shtofman RL; Runge KW; Berkner KL
    Biochemistry; 2006 Nov; 45(44):13239-48. PubMed ID: 17073445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the propeptide and gamma-glutamic acid domain of factor IX for in vitro carboxylation by the vitamin K-dependent carboxylase.
    Stanley TB; Wu SM; Houben RJ; Mutucumarana VP; Stafford DW
    Biochemistry; 1998 Sep; 37(38):13262-8. PubMed ID: 9748333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sequences within the gamma-carboxylase that represent a novel contact site with vitamin K-dependent proteins and that are required for activity.
    Pudota BN; Hommema EL; Hallgren KW; McNally BA; Lee S; Berkner KL
    J Biol Chem; 2001 Dec; 276(50):46878-86. PubMed ID: 11591726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional insights into enzymes of the vitamin K cycle.
    Tie JK; Stafford DW
    J Thromb Haemost; 2016 Feb; 14(2):236-47. PubMed ID: 26663892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis.
    Sugiura I; Furie B; Walsh CT; Furie BC
    J Biol Chem; 1996 Jul; 271(30):17837-44. PubMed ID: 8663364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gamma-carboxylation recognition site is sufficient to direct vitamin K-dependent carboxylation on an adjacent glutamate-rich region of thrombin in a propeptide-thrombin chimera.
    Furie BC; Ratcliffe JV; Tward J; Jorgensen MJ; Blaszkowsky LS; DiMichele D; Furie B
    J Biol Chem; 1997 Nov; 272(45):28258-62. PubMed ID: 9353278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The propeptides of the vitamin K-dependent proteins possess different affinities for the vitamin K-dependent carboxylase.
    Stanley TB; Jin DY; Lin PJ; Stafford DW
    J Biol Chem; 1999 Jun; 274(24):16940-4. PubMed ID: 10358041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GGCX mutants that impair hemostasis reveal the importance of processivity and full carboxylation to VKD protein function.
    Rishavy MA; Hallgren KW; Wilson LA; Hiznay JM; Runge KW; Berkner KL
    Blood; 2022 Oct; 140(15):1710-1722. PubMed ID: 35767717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.