These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22516796)

  • 1. The multifaceted role of aspartate-family amino acids in plant metabolism.
    Kirma M; Araújo WL; Fernie AR; Galili G
    J Exp Bot; 2012 Sep; 63(14):4995-5001. PubMed ID: 22516796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.
    Less H; Angelovici R; Tzin V; Galili G
    Amino Acids; 2010 Oct; 39(4):1023-8. PubMed ID: 20364431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants.
    Jander G; Joshi V
    Mol Plant; 2010 Jan; 3(1):54-65. PubMed ID: 20019093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation.
    Galili G
    Plant Signal Behav; 2011 Feb; 6(2):192-5. PubMed ID: 21512320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aspartic acid metabolic pathway, an exciting and essential pathway in plants.
    Azevedo RA; Lancien M; Lea PJ
    Amino Acids; 2006 Mar; 30(2):143-62. PubMed ID: 16525757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine catabolism, amino acid transport, and systemic acquired resistance: what is the link?
    Yang H; Ludewig U
    Plant Signal Behav; 2014; 9(7):e28933. PubMed ID: 25763483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the metabolism of aspartate-family amino acids in plant seeds.
    Wang W; Xu M; Wang G; Galili G
    Plant Reprod; 2018 Sep; 31(3):203-211. PubMed ID: 29399717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality.
    Galili G; Amir R
    Plant Biotechnol J; 2013 Feb; 11(2):211-22. PubMed ID: 23279001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the levels of essential amino acids and sulfur metabolites in plants.
    Galili G; Amir R; Hoefgen R; Hesse H
    Biol Chem; 2005 Sep; 386(9):817-31. PubMed ID: 16164407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants.
    Nikiforova VJ; Bielecka M; Gakière B; Krueger S; Rinder J; Kempa S; Morcuende R; Scheible WR; Hesse H; Hoefgen R
    Amino Acids; 2006 Mar; 30(2):173-83. PubMed ID: 16552493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms.
    Craciun A; Jacobs M; Vauterin M
    FEBS Lett; 2000 Dec; 487(2):234-8. PubMed ID: 11150516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants.
    Azevedo RA; Arruda P; Turner WL; Lea PJ
    Phytochemistry; 1997 Oct; 46(3):395-419. PubMed ID: 9332022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.
    Mohapatra S; Minocha R; Long S; Minocha SC
    Amino Acids; 2010 Apr; 38(4):1117-29. PubMed ID: 19649694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of enzymes involved in lysine catabolism from sorghum seeds.
    Fornazier RF; Gaziola SA; Helm CV; Lea PJ; Azevedo RA
    J Agric Food Chem; 2005 Mar; 53(5):1791-8. PubMed ID: 15740075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Not just a circle: flux modes in the plant TCA cycle.
    Sweetlove LJ; Beard KF; Nunes-Nesi A; Fernie AR; Ratcliffe RG
    Trends Plant Sci; 2010 Aug; 15(8):462-70. PubMed ID: 20554469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutaric aciduria type II: evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase.
    Christensen E; Kølvraa S; Gregersen N
    Pediatr Res; 1984 Jul; 18(7):663-7. PubMed ID: 6433313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport.
    Fernie AR; Carrari F; Sweetlove LJ
    Curr Opin Plant Biol; 2004 Jun; 7(3):254-61. PubMed ID: 15134745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein degradation - an alternative respiratory substrate for stressed plants.
    Araújo WL; Tohge T; Ishizaki K; Leaver CJ; Fernie AR
    Trends Plant Sci; 2011 Sep; 16(9):489-98. PubMed ID: 21684795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism.
    Wagenmakers AJ
    Exerc Sport Sci Rev; 1998; 26():287-314. PubMed ID: 9696993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine enhances methionine content by modulating the expression of S-adenosylmethionine synthase.
    Hacham Y; Song L; Schuster G; Amir R
    Plant J; 2007 Sep; 51(5):850-61. PubMed ID: 17617175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.