These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22516977)

  • 1. The physics of protein-DNA interaction networks in the control of gene expression.
    Saiz L
    J Phys Condens Matter; 2012 May; 24(19):193102. PubMed ID: 22516977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise.
    Vilar JM; Saiz L
    Curr Opin Genet Dev; 2005 Apr; 15(2):136-44. PubMed ID: 15797196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein/DNA interaction networks: versatile macromolecular structures for the control of gene expression.
    Saiz L; Vilar JM
    IET Syst Biol; 2008 Sep; 2(5):247-55. PubMed ID: 19045820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilevel deconstruction of the In vivo behavior of looped DNA-protein complexes.
    Saiz L; Vilar JM
    PLoS One; 2007 Apr; 2(4):e355. PubMed ID: 17406679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the in vivo looping properties of DNA.
    Saiz L; Rubi JM; Vilar JM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17642-5. PubMed ID: 16303869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA looping and physical constraints on transcription regulation.
    Vilar JM; Leibler S
    J Mol Biol; 2003 Aug; 331(5):981-9. PubMed ID: 12927535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of DNA looping on the induction kinetics of the lac operon.
    Narang A
    J Theor Biol; 2007 Aug; 247(4):695-712. PubMed ID: 17490688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial repression loops require enhanced DNA flexibility.
    Becker NA; Kahn JD; Maher LJ
    J Mol Biol; 2005 Jun; 349(4):716-30. PubMed ID: 15893770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping.
    Zhang Y; McEwen AE; Crothers DM; Levene SD
    PLoS One; 2006 Dec; 1(1):e136. PubMed ID: 17205140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics.
    Mulligan PJ; Chen YJ; Phillips R; Spakowitz AJ
    Biophys J; 2015 Aug; 109(3):618-29. PubMed ID: 26244743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo.
    Law SM; Bellomy GR; Schlax PJ; Record MT
    J Mol Biol; 1993 Mar; 230(1):161-73. PubMed ID: 8450533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Expressions and Physics for Single-Cell mRNA Distributions of the lac Operon of E. coli.
    Choudhary K; Narang A
    Biophys J; 2019 Aug; 117(3):572-586. PubMed ID: 31331635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion.
    Vanzi F; Broggio C; Sacconi L; Pavone FS
    Nucleic Acids Res; 2006; 34(12):3409-20. PubMed ID: 16835309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robustness of DNA looping across multiple cell divisions in individual bacteria.
    Chang C; Garcia-Alcala M; Saiz L; Vilar JMG; Cluzel P
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2200061119. PubMed ID: 35960846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable prediction of complex phenotypes from a modular design in free energy space: an extensive exploration of the lac operon.
    Vilar JM; Saiz L
    ACS Synth Biol; 2013 Oct; 2(10):576-86. PubMed ID: 23654358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Lac repressor-operator assembly: the influence of DNA looping on Lac repressor conformation.
    Swigon D; Coleman BD; Olson WK
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9879-84. PubMed ID: 16785444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of DNA looping interactions by type II restriction enzymes that require two copies of their recognition sites.
    Milsom SE; Halford SE; Embleton ML; Szczelkun MD
    J Mol Biol; 2001 Aug; 311(3):515-27. PubMed ID: 11493005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic dynamics of macromolecular-assembly networks.
    Saiz L; Vilar JM
    Mol Syst Biol; 2006; 2():2006.0024. PubMed ID: 16738569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.