BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22518097)

  • 1. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing.
    Farabet C; Paz R; Pérez-Carrasco J; Zamarreño-Ramos C; Linares-Barranco A; Lecun Y; Culurciello E; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2012; 6():32. PubMed ID: 22518097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing--application to feedforward ConvNets.
    Pérez-Carrasco JA; Zhao B; Serrano C; Acha B; Serrano-Gotarredona T; Chen S; Linares-Barranco B
    IEEE Trans Pattern Anal Mach Intell; 2013 Nov; 35(11):2706-19. PubMed ID: 24051730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps.
    Zhang L; Yang J; Shi C; Lin Y; He W; Zhou X; Yang X; Liu L; Wu N
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation.
    Camuñas-Mesa LA; Domínguez-Cordero YL; Linares-Barranco A; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2018; 12():63. PubMed ID: 29515349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.
    Perez-Carrasco JA; Acha B; Serrano C; Camunas-Mesa L; Serrano-Gotarredona T; Linares-Barranco B
    IEEE Trans Neural Netw; 2010 Apr; 21(4):609-20. PubMed ID: 20181543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.
    Stromatias E; Neil D; Pfeiffer M; Galluppi F; Furber SB; Liu SC
    Front Neurosci; 2015; 9():222. PubMed ID: 26217169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-mimetic high-speed target localization with fused frame and event vision for edge application.
    Lele AS; Fang Y; Anwar A; Raychowdhury A
    Front Neurosci; 2022; 16():1010302. PubMed ID: 36507348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Reduction of Computational Complexity of Deep Convolutional Neural Networks.
    Maji P; Mullins R
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Line Buffer Microarchitecture for Arbitrary Sized Streaming Image Processing.
    Shi R; Wong JSJ; So HK
    J Imaging; 2019 Mar; 5(3):. PubMed ID: 34460462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved VLSI Design of the ALU Based FIR Filter for Biomedical Image Filtering Application.
    Arulkumar M; Chandrasekaran M
    Curr Med Imaging; 2021; 17(2):276-287. PubMed ID: 32807061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-Efficient Spiking Segmenter for Frame and Event-Based Images.
    Zhang H; Fan X; Zhang Y
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A processing-in-pixel-in-memory paradigm for resource-constrained TinyML applications.
    Datta G; Kundu S; Yin Z; Lakkireddy RT; Mathai J; Jacob AP; Beerel PA; Jaiswal AR
    Sci Rep; 2022 Aug; 12(1):14396. PubMed ID: 35999235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital Image Decoder for Efficient Hardware Implementation.
    Savić G; Prokin M; Rajović V; Prokin D
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a pulse coupled neural network in FPGA.
    Waldemark J; Millberg M; Lindblad T; Waldemark K; Becanovic V
    Int J Neural Syst; 2000 Jun; 10(3):171-7. PubMed ID: 11011789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Event management for large scale event-driven digital hardware spiking neural networks.
    Caron LC; D'Haene M; Mailhot F; Schrauwen B; Rouat J
    Neural Netw; 2013 Sep; 45():83-93. PubMed ID: 23522624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Flexible Hardware Accelerators for Image Convolutions and Transposed Convolutions.
    Sestito C; Spagnolo F; Perri S
    J Imaging; 2021 Oct; 7(10):. PubMed ID: 34677296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-Inspired Hardware Solutions for Inference in Bayesian Networks.
    Bagheriye L; Kwisthout J
    Front Neurosci; 2021; 15():728086. PubMed ID: 34924925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Hardware Design and Implementation of the Voting Scheme-Based Convolution.
    Pereira P; Silva J; Silva A; Fernandes D; Machado R
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shot Boundary Detection with 3D Depthwise Convolutions and Visual Attention.
    Esteve Brotons MJ; Lucendo FJ; Javier RJ; Garcia-Rodriguez J
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.