These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22518109)

  • 1. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control.
    Lambert FM; Straka H
    Front Neurol; 2012; 3():42. PubMed ID: 22518109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradual and reversible central vestibular reorganization in frog after selective labyrinthine nerve branch lesions.
    Goto F; Straka H; Dieringer N
    Exp Brain Res; 2002 Dec; 147(3):374-86. PubMed ID: 12428145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic organization principles of the VOR: lessons from frogs.
    Straka H; Dieringer N
    Prog Neurobiol; 2004 Jul; 73(4):259-309. PubMed ID: 15261395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Vestibular compensation': neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates.
    Dieringer N
    Prog Neurobiol; 1995 Jun; 46(2-3):97-129. PubMed ID: 7568917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-related postlesional vestibular reorganization.
    Dieringer N
    Ann N Y Acad Sci; 2003 Oct; 1004():50-60. PubMed ID: 14662447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postlesional vestibular reorganization in frogs: evidence for a basic reaction pattern after nerve injury.
    Goto F; Straka H; Dieringer N
    J Neurophysiol; 2001 Jun; 85(6):2643-6. PubMed ID: 11387410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steps toward recovery of function after hemilabyrinthectomy in frogs.
    Dieringer N; Straka H
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):27-33. PubMed ID: 9674511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commissural inputs to secondary vestibular neurons in alert cats after canal plugs.
    Farrow K; Broussard DM
    J Neurophysiol; 2003 Jun; 89(6):3351-3. PubMed ID: 12783962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-lesional plasticity in the central nervous system of the guinea-pig: a "top-down" adaptation process?
    Vibert N; Bantikyan A; Babalian A; Serafin M; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 94(1):1-5. PubMed ID: 10613489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and electrophysiological consequences of unilateral pre- versus postganglionic vestibular lesions in the frog.
    Kunkel AW; Dieringer N
    J Comp Physiol A; 1994 May; 174(5):621-32. PubMed ID: 8006858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation.
    Sadeghi SG; Minor LB; Cullen KE
    J Neurophysiol; 2011 Feb; 105(2):661-73. PubMed ID: 21148096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Vestibular compensation. Review of the literature and clinical applications].
    de Waele C; Vidal PP; Tran Ba Huy P; Freyss G
    Ann Otolaryngol Chir Cervicofac; 1990; 107(5):285-98. PubMed ID: 2221721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons.
    Pfanzelt S; Rössert C; Rohregger M; Glasauer S; Moore LE; Straka H
    J Neurosci; 2008 Oct; 28(41):10349-62. PubMed ID: 18842894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory Pathways.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):329-357. PubMed ID: 314903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles.
    Allum JH; Honegger F
    Exp Brain Res; 1998 Aug; 121(4):478-94. PubMed ID: 9746156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):311-28. PubMed ID: 226388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galvanic Vestibular Stimulation: Cellular Substrates and Response Patterns of Neurons in the Vestibulo-Ocular Network.
    Gensberger KD; Kaufmann AK; Dietrich H; Branoner F; Banchi R; Chagnaud BP; Straka H
    J Neurosci; 2016 Aug; 36(35):9097-110. PubMed ID: 27581452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy.
    Yamanaka T; Him A; Cameron SA; Dutia MB
    J Physiol; 2000 Mar; 523 Pt 2(Pt 2):413-24. PubMed ID: 10699085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional organization of vestibular commissural connections in frog.
    Malinvaud D; Vassias I; Reichenberger I; Rössert C; Straka H
    J Neurosci; 2010 Mar; 30(9):3310-25. PubMed ID: 20203191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.