These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22518946)

  • 1. Biomechanics of walking with snowshoes.
    Browning RC; Kurtz RN; Kerherve H
    Sports Biomech; 2012 Mar; 11(1):73-84. PubMed ID: 22518946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energy expenditure of snowshoeing in packed vs. unpacked snow at low-level walking speeds.
    Connolly DA
    J Strength Cond Res; 2002 Nov; 16(4):606-10. PubMed ID: 12423193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Shank-to-Vertical-Angle as a parameter to evaluate tuning of Ankle-Foot Orthoses.
    Kerkum YL; Houdijk H; Brehm MA; Buizer AI; Kessels ML; Sterk A; van den Noort JC; Harlaar J
    Gait Posture; 2015 Sep; 42(3):269-74. PubMed ID: 26050873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Randomized Comparison of the Biomechanical Effect of Two Commercially Available Rocker Bottom Shoes to a Conventional Athletic Shoe During Walking in Healthy Individuals.
    Talaty M; Patel S; Esquenazi A
    J Foot Ankle Surg; 2016; 55(4):772-6. PubMed ID: 27079303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking.
    Dames KD; Smith JD
    Gait Posture; 2016 Oct; 50():207-211. PubMed ID: 27649512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of high-heeled gait.
    Esenyel M; Walsh K; Walden JG; Gitter A
    J Am Podiatr Med Assoc; 2003; 93(1):27-32. PubMed ID: 12533553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different unstable sole construction on kinematics and muscle activity of lower limb.
    Gu Y; Lu Y; Mei Q; Li J; Ren J
    Hum Mov Sci; 2014 Aug; 36():46-57. PubMed ID: 24929612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower extremity mechanics and energy cost of walking in high-heeled shoes.
    Ebbeling CJ; Hamill J; Crussemeyer JA
    J Orthop Sports Phys Ther; 1994 Apr; 19(4):190-6. PubMed ID: 8173565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heel height affects lower extremity frontal plane joint moments during walking.
    Barkema DD; Derrick TR; Martin PE
    Gait Posture; 2012 Mar; 35(3):483-8. PubMed ID: 22169388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propulsive joint powers track with sensor-derived angular velocity: A potential tool for lab-less gait retraining.
    Hafer JF; Zernicke RF
    J Biomech; 2020 Jun; 106():109821. PubMed ID: 32517990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Both Motorized and Nonmotorized Treadmill Gait Kinematics to Overground Locomotion.
    Fullenkamp AM; Tolusso DV; Laurent CM; Campbell BM; Cripps AE
    J Sport Rehabil; 2018 Jul; 27(4):357-363. PubMed ID: 28605231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immediate effects of unilateral restricted ankle motion on gait kinematics in healthy subjects.
    Romkes J; Schweizer K
    Gait Posture; 2015 Mar; 41(3):835-40. PubMed ID: 25800648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy cost during locomotion across snow: a comparison of four types of snowshoes with snowshoe design considerations.
    Knapik JJ; Hickey C; Ortega S; de Pontbriand R
    Work; 2002; 18(2):171-7. PubMed ID: 12441581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy cost and physiological responses of males snowshoeing with rotating and fixed toe-cord designs in powdered snow conditions.
    Dalleck LC; DeVoe DE; Kravitz L
    Ergonomics; 2003 Jul; 46(9):875-81. PubMed ID: 12775486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of foot orthotics and gait velocity on lower limb kinematics and temporal events of stance.
    McCulloch MU; Brunt D; Vander Linden D
    J Orthop Sports Phys Ther; 1993 Jan; 17(1):2-10. PubMed ID: 8467332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of walking in footwear with varying heel sole differentials on shank and foot segment kinematics.
    Owen E; Fatone S; Hansen A
    Prosthet Orthot Int; 2018 Aug; 42(4):394-401. PubMed ID: 28884616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of slow running and walking with a rocker shoe.
    Sobhani S; Hijmans J; van den Heuvel E; Zwerver J; Dekker R; Postema K
    Gait Posture; 2013 Sep; 38(4):998-1004. PubMed ID: 23770233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.