These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Fry EJ; Chagnon MJ; López-Vales R; Tremblay ML; David S Glia; 2010 Mar; 58(4):423-33. PubMed ID: 19780196 [TBL] [Abstract][Full Text] [Related]
3. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS. Sapieha PS; Duplan L; Uetani N; Joly S; Tremblay ML; Kennedy TE; Di Polo A Mol Cell Neurosci; 2005 Apr; 28(4):625-35. PubMed ID: 15797710 [TBL] [Abstract][Full Text] [Related]
4. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Haas KZ; Sperber EF; Opanashuk LA; Stanton PK; Moshé SL Hippocampus; 2001; 11(6):615-25. PubMed ID: 11811655 [TBL] [Abstract][Full Text] [Related]
5. Targeting RPTPσ with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model. Zhou HX; Li XY; Li FY; Liu C; Liang ZP; Liu S; Zhang B; Wang TY; Chu TC; Lu L; Ning GZ; Kong XH; Feng SQ Brain Res; 2014 Oct; 1586():46-63. PubMed ID: 25152470 [TBL] [Abstract][Full Text] [Related]
6. Modulation of Receptor Protein Tyrosine Phosphatase Sigma Increases Chondroitin Sulfate Proteoglycan Degradation through Cathepsin B Secretion to Enhance Axon Outgrowth. Tran AP; Sundar S; Yu M; Lang BT; Silver J J Neurosci; 2018 Jun; 38(23):5399-5414. PubMed ID: 29760175 [TBL] [Abstract][Full Text] [Related]
7. Late phase of long-term potentiation in the mossy fiber-CA3 hippocampal pathway is critically dependent on metalloproteinases activity. Wójtowicz T; Mozrzymas JW Hippocampus; 2010 Aug; 20(8):917-21. PubMed ID: 20572195 [TBL] [Abstract][Full Text] [Related]
9. Altered glucose homeostasis in mice lacking the receptor protein tyrosine phosphatase sigma. Chagnon MJ; Elchebly M; Uetani N; Dombrowski L; Cheng A; Mooney RA; Marette A; Tremblay ML Can J Physiol Pharmacol; 2006 Jul; 84(7):755-63. PubMed ID: 16998539 [TBL] [Abstract][Full Text] [Related]
10. Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Essmann CL; Martinez E; Geiger JC; Zimmer M; Traut MH; Stein V; Klein R; Acker-Palmer A Nat Neurosci; 2008 Sep; 11(9):1035-43. PubMed ID: 19160501 [TBL] [Abstract][Full Text] [Related]
11. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5. Gao WQ; Shinsky N; Armanini MP; Moran P; Zheng JL; Mendoza-Ramirez JL; Phillips HS; Winslow JW; Caras IW Mol Cell Neurosci; 1998 Aug; 11(5-6):247-59. PubMed ID: 9698392 [TBL] [Abstract][Full Text] [Related]
12. Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. Monnerie H; Le Roux PD J Neurosci Res; 2006 May; 83(6):944-56. PubMed ID: 16498632 [TBL] [Abstract][Full Text] [Related]
13. Receptor protein tyrosine phosphatase sigma inhibits axonal regeneration and the rate of axon extension. Thompson KM; Uetani N; Manitt C; Elchebly M; Tremblay ML; Kennedy TE Mol Cell Neurosci; 2003 Aug; 23(4):681-92. PubMed ID: 12932447 [TBL] [Abstract][Full Text] [Related]
14. Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain. Ureña JM; La Torre A; Martínez A; Lowenstein E; Franco N; Winsky-Sommerer R; Fontana X; Casaroli-Marano R; Ibáñez-Sabio MA; Pascual M; Del Rio JA; de Lecea L; Soriano E J Comp Neurol; 2005 Sep; 490(2):119-32. PubMed ID: 16052498 [TBL] [Abstract][Full Text] [Related]
15. Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term potentiation. Hsu KS; Huang CC; Liang YC; Wu HM; Chen YL; Lo SW; Ho WC Hippocampus; 2002; 12(6):787-802. PubMed ID: 12542230 [TBL] [Abstract][Full Text] [Related]
16. Altered hippocampal short-term plasticity and associative memory in synaptotagmin IV (-/-) mice. Ferguson GD; Wang H; Herschman HR; Storm DR Hippocampus; 2004; 14(8):964-74. PubMed ID: 15390175 [TBL] [Abstract][Full Text] [Related]
17. Fetal hippocampal CA3 cell grafts enriched with FGF-2 and BDNF exhibit robust long-term survival and integration and suppress aberrant mossy fiber sprouting in the injured middle-aged hippocampus. Rao MS; Hattiangady B; Shetty AK Neurobiol Dis; 2006 Feb; 21(2):276-90. PubMed ID: 16099669 [TBL] [Abstract][Full Text] [Related]
18. Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity. Tu B; Jiao Y; Herzog H; Nadler JV Neuroscience; 2006 Dec; 143(4):1085-94. PubMed ID: 17027162 [TBL] [Abstract][Full Text] [Related]
19. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury. Amini M; Ma CL; Farazifard R; Zhu G; Zhang Y; Vanderluit J; Zoltewicz JS; Hage F; Savitt JM; Lagace DC; Slack RS; Beique JC; Baudry M; Greer PA; Bergeron R; Park DS J Neurosci; 2013 Mar; 33(13):5773-84. PubMed ID: 23536090 [TBL] [Abstract][Full Text] [Related]
20. Identification of function-regulating antibodies targeting the receptor protein tyrosine phosphatase sigma ectodomain. Wu CL; Hardy S; Aubry I; Landry M; Haggarty A; Saragovi HU; Tremblay ML PLoS One; 2017; 12(5):e0178489. PubMed ID: 28558026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]