These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22519336)

  • 1. Computer simulation of sedimentation of ionic systems using the Wolf method.
    Viveros-Méndez PX; Gil-Villegas A
    J Chem Phys; 2012 Apr; 136(15):154507. PubMed ID: 22519336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of charged hard spherocylinders.
    Avendaño C; Gil-Villegas A; González-Tovar E
    J Chem Phys; 2008 Jan; 128(4):044506. PubMed ID: 18247968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Wolf method applied to the type I methane and carbon dioxide gas hydrates.
    Sadeghifar A; Dadvar M; Karimi S; Ghobadi AF
    J Mol Graph Model; 2012 Sep; 38():455-64. PubMed ID: 23142621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo computer simulation of sedimentation of charged hard spherocylinders.
    Viveros-Méndez PX; Gil-Villegas A; Aranda-Espinoza S
    J Chem Phys; 2014 Jul; 141(4):044905. PubMed ID: 25084954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations.
    Hansen JS; Schrøder TB; Dyre JC
    J Phys Chem B; 2012 May; 116(19):5738-43. PubMed ID: 22497264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical equations of state for a charged fluid.
    Sánchez-Monroy X; Torres-Arenas J; Gil-Villegas A
    J Chem Phys; 2019 Apr; 150(14):144507. PubMed ID: 30981249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat capacities of dipolar fluids: ferromagnetic colloids.
    Máté Z; Szalai I
    J Phys Condens Matter; 2008 May; 20(20):204112. PubMed ID: 21694242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairwise Alternatives to Ewald Summation for Calculating Long-Range Electrostatics in Ionic Liquids.
    McCann BW; Acevedo O
    J Chem Theory Comput; 2013 Feb; 9(2):944-50. PubMed ID: 26588737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free Energy Landscapes of Alanine Dipeptide in Explicit Water Reproduced by the Force-Switching Wolf Method.
    Yonezawa Y; Fukuda I; Kamiya N; Shimoyama H; Nakamura H
    J Chem Theory Comput; 2011 May; 7(5):1484-93. PubMed ID: 26610139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcanonical ensemble simulation method applied to discrete potential fluids.
    Sastre F; Benavides AL; Torres-Arenas J; Gil-Villegas A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033303. PubMed ID: 26465582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Simulation of Vapor-Liquid Equilibria Using the Wolf Method for Electrostatic Interactions.
    Hens R; Vlugt TJH
    J Chem Eng Data; 2018 Apr; 63(4):1096-1102. PubMed ID: 30258248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of Coulombic interaction methods in non-equilibrium studies of heat transfer in water.
    Muscatello J; Bresme F
    J Chem Phys; 2011 Dec; 135(23):234111. PubMed ID: 22191868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE.
    Lamare F; Turzo A; Bizais Y; Le Rest CC; Visvikis D
    Phys Med Biol; 2006 Feb; 51(4):943-62. PubMed ID: 16467589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutoff radius effect of the isotropic periodic sum and Wolf method in liquid-vapor interfaces of water.
    Takahashi KZ; Narumi T; Yasuoka K
    J Chem Phys; 2011 May; 134(17):174112. PubMed ID: 21548678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of molecular simulation methods to accurately represent protein-surface interactions: Method assessment for the calculation of electrostatic effects.
    Collier G; Vellore NA; Latour RA; Stuart SJ
    Biointerphases; 2009 Dec; 4(4):57-64. PubMed ID: 20408725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study.
    Carré A; Berthier L; Horbach J; Ispas S; Kob W
    J Chem Phys; 2007 Sep; 127(11):114512. PubMed ID: 17887862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.