These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 22519555)
1. Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two environments. Debes PV; Normandeau E; Fraser DJ; Bernatchez L; Hutchings JA Mol Ecol; 2012 Jun; 21(11):2574-87. PubMed ID: 22519555 [TBL] [Abstract][Full Text] [Related]
2. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557 [TBL] [Abstract][Full Text] [Related]
3. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Roberge C; Normandeau E; Einum S; Guderley H; Bernatchez L Mol Ecol; 2008 Jan; 17(1):314-24. PubMed ID: 18173503 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic comparison of communally reared wild, domesticated and hybrid Atlantic salmon fry under stress and control conditions. Bicskei B; Taggart JB; Bron JE; Glover KA BMC Genet; 2020 May; 21(1):57. PubMed ID: 32471356 [TBL] [Abstract][Full Text] [Related]
5. Infectious salmon anaemia virus (ISAV) isolates induce distinct gene expression responses in the Atlantic salmon (Salmo salar) macrophage/dendritic-like cell line TO, assessed using genomic techniques. Workenhe ST; Hori TS; Rise ML; Kibenge MJ; Kibenge FS Mol Immunol; 2009 Sep; 46(15):2955-74. PubMed ID: 19616850 [TBL] [Abstract][Full Text] [Related]
6. Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip. Karlsson S; Moen T; Lien S; Glover KA; Hindar K Mol Ecol Resour; 2011 Mar; 11 Suppl 1():247-53. PubMed ID: 21429178 [TBL] [Abstract][Full Text] [Related]
7. Reduction in antipredator response detected between first and second generations of endangered juvenile Atlantic salmon Salmo salar in a captive breeding and rearing programme. de Mestral LG; Herbinger CM J Fish Biol; 2013 Nov; 83(5):1268-86. PubMed ID: 24580666 [TBL] [Abstract][Full Text] [Related]
8. Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar. Jørgensen KM; Solberg MF; Besnier F; Thorsen A; Fjelldal PG; Skaala Ø; Malde K; Glover KA BMC Ecol; 2018 Apr; 18(1):14. PubMed ID: 29650003 [TBL] [Abstract][Full Text] [Related]
9. Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon. Roberge C; Einum S; Guderley H; Bernatchez L Mol Ecol; 2006 Jan; 15(1):9-20. PubMed ID: 16367826 [TBL] [Abstract][Full Text] [Related]
10. Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression. Bicskei B; Taggart JB; Glover KA; Bron JE Genet Sel Evol; 2016 Mar; 48():20. PubMed ID: 26987528 [TBL] [Abstract][Full Text] [Related]
11. A comparison of gene transcription profiles of domesticated and wild Atlantic salmon (Salmo salar L.) at early life stages, reared under controlled conditions. Bicskei B; Bron JE; Glover KA; Taggart JB BMC Genomics; 2014 Oct; 15(1):884. PubMed ID: 25301270 [TBL] [Abstract][Full Text] [Related]
12. Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild. Glover KA; Solberg MF; Besnier F; Skaala Ø Sci Rep; 2018 Sep; 8(1):13966. PubMed ID: 30228303 [TBL] [Abstract][Full Text] [Related]
13. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild. Besnier F; Glover KA; Lien S; Kent M; Hansen MM; Shen X; Skaala Ø Heredity (Edinb); 2015 Jul; 115(1):47-55. PubMed ID: 26059968 [TBL] [Abstract][Full Text] [Related]
14. Quantifying heritable variation in fitness-related traits of wild, farmed and hybrid Atlantic salmon families in a wild river environment. Reed TE; Prodöhl P; Hynes R; Cross T; Ferguson A; McGinnity P Heredity (Edinb); 2015 Aug; 115(2):173-84. PubMed ID: 25920670 [TBL] [Abstract][Full Text] [Related]
15. Thermal plasticity in farmed, wild and hybrid Atlantic salmon during early development: has domestication caused divergence in low temperature tolerance? Solberg MF; Dyrhovden L; Matre IH; Glover KA BMC Evol Biol; 2016 Feb; 16():38. PubMed ID: 26883947 [TBL] [Abstract][Full Text] [Related]
16. Evidence of recent signatures of selection during domestication in an Atlantic salmon population. Gutierrez AP; Yáñez JM; Davidson WS Mar Genomics; 2016 Apr; 26():41-50. PubMed ID: 26723557 [TBL] [Abstract][Full Text] [Related]
17. Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin. Solberg MF; Kvamme BO; Nilsen F; Glover KA BMC Res Notes; 2012 Dec; 5():672. PubMed ID: 23217180 [TBL] [Abstract][Full Text] [Related]
18. Genetic variation within and among domesticated Atlantic salmon broodstocks in British Columbia, Canada. Withler RE; Supernault KJ; Miller KM Anim Genet; 2005 Feb; 36(1):43-50. PubMed ID: 15670130 [TBL] [Abstract][Full Text] [Related]
19. Growth reaction norms of domesticated, wild and hybrid Atlantic salmon families in response to differing social and physical environments. Solberg MF; Zhang Z; Nilsen F; Glover KA BMC Evol Biol; 2013 Oct; 13():234. PubMed ID: 24165438 [TBL] [Abstract][Full Text] [Related]
20. Effects of combined gamma-irradiation and metal (Al+Cd) exposures in Atlantic salmon (Salmo salar L.). Olsvik PA; Heier LS; Rosseland BO; Teien HC; Salbu B J Environ Radioact; 2010 Mar; 101(3):230-6. PubMed ID: 19969403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]