These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22519654)

  • 21. [Extracorporeal shock waves induce ventral-periosteal new bone formation out of the focus zone--results of an in-vivo animal trial].
    Tischer T; Milz S; Anetzberger H; Müller PE; Wirtz DC; Schmitz C; Ueberle F; Maier M
    Z Orthop Ihre Grenzgeb; 2002; 140(3):281-5. PubMed ID: 12085293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of age on the response of rabbit periosteal osteoprogenitor cells to exogenous transforming growth factor-beta 2.
    Critchlow MA; Bland YS; Ashhurst DE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():499-516. PubMed ID: 8207075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repairing critical-sized rat calvarial defects with progenitor cell-seeded acellular periosteum: a novel biomimetic scaffold.
    Rapp SJ; Jones DC; Gerety P; Taylor JA
    Surgery; 2012 Oct; 152(4):595-604, 605.e1; discussion 604-5. PubMed ID: 22959744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental study of free periosteal autograft. Animals age and periosteal osteogenesis.
    Li WG; Tang JQ; Cui QL; Zhou RZ
    Chin Med J (Engl); 1989 May; 102(5):361-4. PubMed ID: 2509158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Bone fracture and the healing mechanisms. Application of the extracorporeal shock wave on treatment of fracture].
    Ikeda K
    Clin Calcium; 2009 May; 19(5):718-25. PubMed ID: 19398841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periosteal cells in bone tissue engineering.
    Hutmacher DW; Sittinger M
    Tissue Eng; 2003; 9 Suppl 1():S45-64. PubMed ID: 14511470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications.
    Chen D; Shen H; Shao J; Jiang Y; Lu J; He Y; Huang C
    Int J Mol Med; 2011 May; 27(5):707-13. PubMed ID: 21369695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry.
    Chanavaz M
    J Oral Implantol; 1995; 21(3):214-9. PubMed ID: 8699515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of osteogenic construct using periosteal-derived osteoblasts and polydioxanone/pluronic F127 scaffold with periosteal-derived CD146 positive endothelial-like cells.
    Lee JH; Kim SW; Kim UK; Oh SH; June-Kim S; Park BW; Kim JH; Hah YS; Kim DR; Rho GJ; Maeng GH; Jeon RH; Lee HC; Kim JR; Kim GC; Byun JH
    J Biomed Mater Res A; 2013 Apr; 101(4):942-53. PubMed ID: 22961670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering.
    Cicconetti A; Sacchetti B; Bartoli A; Michienzi S; Corsi A; Funari A; Robey PG; Bianco P; Riminucci M
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2007 Nov; 104(5):618.e1-12. PubMed ID: 17613258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue-engineered bone formation using periosteal-derived cells and polydioxanone/pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells.
    Lee JH; Kim JH; Oh SH; Kim SJ; Hah YS; Park BW; Kim DR; Rho GJ; Maeng GH; Jeon RH; Lee HC; Kim JR; Kim GC; Kim UK; Byun JH
    Biomaterials; 2011 Aug; 32(22):5033-45. PubMed ID: 21543114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential phenotypic characteristics of heterogeneous cell population in the rabbit periosteum.
    Youn I; Suh JK; Nauman EA; Jones DG
    Acta Orthop; 2005 Jun; 76(3):442-50. PubMed ID: 16156476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds.
    Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX
    Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collagen-coated poly(L-lactide-co-ɛ-caprolactone) film: a promising scaffold for cultured periosteal sheets.
    Kawase T; Yamanaka K; Suda Y; Kaneko T; Okuda K; Kogami H; Nakayama H; Nagata M; Wolff LF; Yoshie H
    J Periodontol; 2010 Nov; 81(11):1653-62. PubMed ID: 20629552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced osteogenesis by a biomimic pseudo-periosteum-involved tissue engineering strategy.
    Shi X; Chen S; Zhao Y; Lai C; Wu H
    Adv Healthc Mater; 2013 Sep; 2(9):1229-35. PubMed ID: 23495244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model.
    Sakata Y; Ueno T; Kagawa T; Kanou M; Fujii T; Yamachika E; Sugahara T
    J Craniomaxillofac Surg; 2006 Dec; 34(8):461-5. PubMed ID: 17157522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair.
    Mason JM; Grande DA; Barcia M; Grant R; Pergolizzi RG; Breitbart AS
    Gene Ther; 1998 Aug; 5(8):1098-104. PubMed ID: 10326033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin.
    Zarnett R; Salter RB
    Can J Surg; 1989 May; 32(3):171-4. PubMed ID: 2713771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.