BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22519660)

  • 1. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Johnson JB; Pearson RG
    J Evol Biol; 2012 Jun; 25(6):1163-79. PubMed ID: 22519660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herbivory Promotes Dental Disparification and Macroevolutionary Dynamics in Grunters (Teleostei: Terapontidae), a Freshwater Adaptive Radiation.
    Davis AM; Unmack PJ; Vari RP; Betancur-R R
    Am Nat; 2016 Mar; 187(3):320-33. PubMed ID: 26913945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of new world silversides (atherinopsidae).
    Bloom DD; Weir JT; Piller KR; Lovejoy NR
    Evolution; 2013 Jul; 67(7):2040-57. PubMed ID: 23815658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater.
    Corush JB
    BMC Evol Biol; 2019 Aug; 19(1):168. PubMed ID: 31412761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Pearson RG; Morgan DL
    BMC Evol Biol; 2013 Feb; 13():53. PubMed ID: 23441994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological speciation in marine v. freshwater fishes.
    Puebla O
    J Fish Biol; 2009 Oct; 75(5):960-96. PubMed ID: 20738594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supertree analyses of the roles of viviparity and habitat in the evolution of atherinomorph fishes.
    Mank JE; Avise JC
    J Evol Biol; 2006 May; 19(3):734-40. PubMed ID: 16674570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular phylogenetics supports multiple evolutionary transitions from marine to freshwater habitats in ariid catfishes.
    Betancur-R R
    Mol Phylogenet Evol; 2010 Apr; 55(1):249-258. PubMed ID: 20045737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeography of the livebearer Xenophallus umbratilis (Teleostei: Poeciliidae): glacial cycles and sea level change predict diversification of a freshwater tropical fish.
    Jones CP; Johnson JB
    Mol Ecol; 2009 Apr; 18(8):1640-53. PubMed ID: 19302355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeography, habitat transitions and hybridization in a radiation of South American silverside fishes revealed by mitochondrial and genomic RAD data.
    Hughes LC; Cardoso YP; Sommer JA; Cifuentes R; Cuello M; Somoza GM; González-Castro M; Malabarba LR; Cussac V; Habit EM; Betancur-R R; Ortí G
    Mol Ecol; 2020 Feb; 29(4):738-751. PubMed ID: 31919910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae).
    Santini F; Nguyen MT; Sorenson L; Waltzek TB; Lynch Alfaro JW; Eastman JM; Alfaro ME
    J Evol Biol; 2013 May; 26(5):1003-18. PubMed ID: 23496826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes.
    Betancur-R R; Ortí G; Pyron RA
    Ecol Lett; 2015 May; 18(5):441-50. PubMed ID: 25808114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explosive diversification following a benthic to pelagic shift in freshwater fishes.
    Hollingsworth PR; Simons AM; Fordyce JA; Hulsey CD
    BMC Evol Biol; 2013 Dec; 13():272. PubMed ID: 24341464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.
    Van Nynatten A; Bloom D; Chang BS; Lovejoy NR
    Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26224386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary history of freshwater sculpins, genus Cottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny.
    Yokoyama R; Goto A
    Mol Phylogenet Evol; 2005 Sep; 36(3):654-68. PubMed ID: 16039150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny.
    Shalchian-Tabrizi K; Bråte J; Logares R; Klaveness D; Berney C; Jakobsen KS
    Environ Microbiol; 2008 Oct; 10(10):2635-44. PubMed ID: 18643928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin.
    de Carvalho DC; Oliveira DA; Pompeu PS; Leal CG; Oliveira C; Hanner R
    Mitochondrial DNA; 2011 Oct; 22 Suppl 1():80-6. PubMed ID: 21699373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae).
    Bloom DD; Lovejoy NR
    J Evol Biol; 2012 Apr; 25(4):701-15. PubMed ID: 22300535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonate phylogeny based on 28S rRNA gene sequences: a framework for discussing habitat transitions and character transformation.
    Holznagel WE; Colgan DJ; Lydeard C
    Mol Phylogenet Evol; 2010 Dec; 57(3):1017-25. PubMed ID: 20920591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and isolation of a retrotransposon from the freshwater sponge Lubomirskia baicalensis: implication in rapid evolution of endemic sponges.
    Wiens M; Grebenjuk VA; Schröder HC; Müller IM; Müller WE
    Prog Mol Subcell Biol; 2009; 47():207-34. PubMed ID: 19198779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.