BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22519699)

  • 1. Electrochemical aptamer-based sandwich assays for the detection of explosives.
    Ho MY; D'Souza N; Migliorato P
    Anal Chem; 2012 May; 84(10):4245-7. PubMed ID: 22519699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanobioprobe mediated DNA aptamers for explosive detection.
    Priyanka ; Shorie M; Bhalla V; Pathania P; Suri CR
    Chem Commun (Camb); 2014 Feb; 50(9):1080-2. PubMed ID: 24316919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe.
    Shahdost-Fard F; Roushani M
    Biosens Bioelectron; 2017 Jan; 87():724-731. PubMed ID: 27649328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing.
    Tang L; Feng H; Cheng J; Li J
    Chem Commun (Camb); 2010 Aug; 46(32):5882-4. PubMed ID: 20625606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.
    Zang J; Guo CX; Hu F; Yu L; Li CM
    Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensor-based on-site explosives detection using aptamers as recognition elements.
    Ehrentreich-Förster E; Orgel D; Krause-Griep A; Cech B; Erdmann VA; Bier F; Scheller FW; Rimmele M
    Anal Bioanal Chem; 2008 Jul; 391(5):1793-800. PubMed ID: 18504560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.
    Goh MS; Pumera M
    Anal Bioanal Chem; 2011 Jan; 399(1):127-31. PubMed ID: 21046081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrathiafulvalene-capped hybrid materials for the optical detection of explosives.
    Salinas Y; Martínez-Máñez R; Jeppesen JO; Petersen LH; Sancenón F; Marcos MD; Soto J; Guillem C; Amorós P
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1538-43. PubMed ID: 23373746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.
    Cizek K; Prior C; Thammakhet C; Galik M; Linker K; Tsui R; Cagan A; Wake J; La Belle J; Wang J
    Anal Chim Acta; 2010 Feb; 661(1):117-21. PubMed ID: 20113724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.
    Zhang D; Jiang J; Chen J; Zhang Q; Lu Y; Yao Y; Li S; Logan Liu G; Liu Q
    Biosens Bioelectron; 2015 Aug; 70():81-8. PubMed ID: 25796040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free and reagentless aptamer-based sensors for small molecules.
    Zayats M; Huang Y; Gill R; Ma CA; Willner I
    J Am Chem Soc; 2006 Oct; 128(42):13666-7. PubMed ID: 17044676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene.
    Sablok K; Bhalla V; Sharma P; Kaushal R; Chaudhary S; Suri CR
    J Hazard Mater; 2013 Mar; 248-249():322-8. PubMed ID: 23416475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.
    Romolo FS; Ferri E; Mirasoli M; D'Elia M; Ripani L; Peluso G; Risoluti R; Maiolini E; Girotti S
    Forensic Sci Int; 2015 Jan; 246():25-30. PubMed ID: 25460104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared-light mediated ratiometric luminescent sensor for multimode visualized assays of explosives.
    Hu X; Wei T; Wang J; Liu ZE; Li X; Zhang B; Li Z; Li L; Yuan Q
    Anal Chem; 2014 Oct; 86(20):10484-91. PubMed ID: 25244607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of explosives using electrochemically reduced graphene.
    Chen TW; Sheng ZH; Wang K; Wang FB; Xia XH
    Chem Asian J; 2011 May; 6(5):1210-6. PubMed ID: 21387564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer.
    Li Y; Zhao M; Wang H
    Anal Bioanal Chem; 2017 Nov; 409(27):6371-6377. PubMed ID: 28852810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid aptamer-antibody linked fluorescence resonance energy transfer based detection of trinitrotoluene.
    Sabherwal P; Shorie M; Pathania P; Chaudhary S; Bhasin KK; Bhalla V; Suri CR
    Anal Chem; 2014 Aug; 86(15):7200-4. PubMed ID: 25008849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes.
    Cetó X; O' Mahony AM; Wang J; Del Valle M
    Talanta; 2013 Mar; 107():270-6. PubMed ID: 23598222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glassy carbon electrode with electrodeposited silver nanoparticles for aptamer based voltammetric determination of trinitrotoluene using riboflavin as a redox probe.
    Roushani M; Shahdost-Fard F
    Mikrochim Acta; 2018 Nov; 185(12):558. PubMed ID: 30467783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.