These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 22519877)
1. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. Wu Y; Cai S; Wang D; He W; Li Y J Am Chem Soc; 2012 May; 134(21):8975-81. PubMed ID: 22519877 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of catalytically active porous platinum nanoparticles by transmetallation reaction and proposition of the mechanism. Pasricha R; Bala T; Biradar AV; Umbarkar S; Sastry M Small; 2009 Jun; 5(12):1467-73. PubMed ID: 19296564 [TBL] [Abstract][Full Text] [Related]
3. Efficient hydrogenation of benzaldehydes over mesopolymer-entrapped Pt nanoparticles in water. Li X; Shen Y; Song L; Wang H; Wu H; Liu Y; Wu P Chem Asian J; 2009 May; 4(5):699-706. PubMed ID: 19253925 [TBL] [Abstract][Full Text] [Related]
4. Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts. Wu J; Zhang J; Peng Z; Yang S; Wagner FT; Yang H J Am Chem Soc; 2010 Apr; 132(14):4984-5. PubMed ID: 20334375 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes. Cheng H; Meng X; Wang Q; Ming J; Yu Y; Zhao F J Colloid Interface Sci; 2012 Jul; 377(1):322-7. PubMed ID: 22487229 [TBL] [Abstract][Full Text] [Related]
6. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water. Tsuji A; Rao KT; Nishimura S; Takagaki A; Ebitani K ChemSusChem; 2011 Apr; 4(4):542-8. PubMed ID: 21271683 [TBL] [Abstract][Full Text] [Related]
7. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. Zhang H; Jin M; Wang J; Kim MJ; Yang D; Xia Y J Am Chem Soc; 2011 Jul; 133(27):10422-5. PubMed ID: 21675792 [TBL] [Abstract][Full Text] [Related]
8. Coating Pt-Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction. Park J; Liu J; Peng HC; Figueroa-Cosme L; Miao S; Choi SI; Bao S; Yang X; Xia Y ChemSusChem; 2016 Aug; 9(16):2209-15. PubMed ID: 27460459 [TBL] [Abstract][Full Text] [Related]
9. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Beermann V; Gocyla M; Willinger E; Rudi S; Heggen M; Dunin-Borkowski RE; Willinger MG; Strasser P Nano Lett; 2016 Mar; 16(3):1719-25. PubMed ID: 26854940 [TBL] [Abstract][Full Text] [Related]
10. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212 [TBL] [Abstract][Full Text] [Related]
11. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose. Liang G; He L; Arai M; Zhao F ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493 [TBL] [Abstract][Full Text] [Related]
12. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. Xiao C; Maligal-Ganesh RV; Li T; Qi Z; Guo Z; Brashler KT; Goes S; Li X; Goh TW; Winans RE; Huang W ChemSusChem; 2013 Oct; 6(10):1915-22. PubMed ID: 24039118 [TBL] [Abstract][Full Text] [Related]
13. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. Yoon Y; Rousseau R; Weber RS; Mei D; Lercher JA J Am Chem Soc; 2014 Jul; 136(29):10287-98. PubMed ID: 24987925 [TBL] [Abstract][Full Text] [Related]
14. Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction. Choi SI; Xie S; Shao M; Lu N; Guerrero S; Odell JH; Park J; Wang J; Kim MJ; Xia Y ChemSusChem; 2014 May; 7(5):1476-83. PubMed ID: 24644079 [TBL] [Abstract][Full Text] [Related]
15. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269 [TBL] [Abstract][Full Text] [Related]
16. Shape-controlled synthesis of Pt nanocrystals: the role of metal carbonyls. Kang Y; Pyo JB; Ye X; Diaz RE; Gordon TR; Stach EA; Murray CB ACS Nano; 2013 Jan; 7(1):645-53. PubMed ID: 23211025 [TBL] [Abstract][Full Text] [Related]
17. Platinum-nanoparticle-supported core--shell polymer nanospheres with unexpected water stability and facile further modification. Yuan C; Xu Y; Luo W; Zeng B; Qiu W; Liu J; Huang H; Dai L Nanotechnology; 2012 May; 23(17):175301. PubMed ID: 22481383 [TBL] [Abstract][Full Text] [Related]
18. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters. Cheng D; Yuan S; Ferrando R J Phys Condens Matter; 2013 Sep; 25(35):355008. PubMed ID: 23913101 [TBL] [Abstract][Full Text] [Related]
19. Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas. Salciccioli M; Vlachos DG J Phys Chem A; 2012 May; 116(18):4621-8. PubMed ID: 22483365 [TBL] [Abstract][Full Text] [Related]
20. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation. Duan H; Wang D; Kou Y; Li Y Chem Commun (Camb); 2013 Jan; 49(3):303-5. PubMed ID: 23183720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]