BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22519877)

  • 1. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions.
    Wu Y; Cai S; Wang D; He W; Li Y
    J Am Chem Soc; 2012 May; 134(21):8975-81. PubMed ID: 22519877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of catalytically active porous platinum nanoparticles by transmetallation reaction and proposition of the mechanism.
    Pasricha R; Bala T; Biradar AV; Umbarkar S; Sastry M
    Small; 2009 Jun; 5(12):1467-73. PubMed ID: 19296564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient hydrogenation of benzaldehydes over mesopolymer-entrapped Pt nanoparticles in water.
    Li X; Shen Y; Song L; Wang H; Wu H; Liu Y; Wu P
    Chem Asian J; 2009 May; 4(5):699-706. PubMed ID: 19253925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts.
    Wu J; Zhang J; Peng Z; Yang S; Wagner FT; Yang H
    J Am Chem Soc; 2010 Apr; 132(14):4984-5. PubMed ID: 20334375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes.
    Cheng H; Meng X; Wang Q; Ming J; Yu Y; Zhao F
    J Colloid Interface Sci; 2012 Jul; 377(1):322-7. PubMed ID: 22487229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.
    Tsuji A; Rao KT; Nishimura S; Takagaki A; Ebitani K
    ChemSusChem; 2011 Apr; 4(4):542-8. PubMed ID: 21271683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors.
    Zhang H; Jin M; Wang J; Kim MJ; Yang D; Xia Y
    J Am Chem Soc; 2011 Jul; 133(27):10422-5. PubMed ID: 21675792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating Pt-Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction.
    Park J; Liu J; Peng HC; Figueroa-Cosme L; Miao S; Choi SI; Bao S; Yang X; Xia Y
    ChemSusChem; 2016 Aug; 9(16):2209-15. PubMed ID: 27460459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability.
    Beermann V; Gocyla M; Willinger E; Rudi S; Heggen M; Dunin-Borkowski RE; Willinger MG; Strasser P
    Nano Lett; 2016 Mar; 16(3):1719-25. PubMed ID: 26854940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
    Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J
    J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose.
    Liang G; He L; Arai M; Zhao F
    ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells.
    Xiao C; Maligal-Ganesh RV; Li T; Qi Z; Guo Z; Brashler KT; Goes S; Li X; Goh TW; Winans RE; Huang W
    ChemSusChem; 2013 Oct; 6(10):1915-22. PubMed ID: 24039118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase.
    Yoon Y; Rousseau R; Weber RS; Mei D; Lercher JA
    J Am Chem Soc; 2014 Jul; 136(29):10287-98. PubMed ID: 24987925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction.
    Choi SI; Xie S; Shao M; Lu N; Guerrero S; Odell JH; Park J; Wang J; Kim MJ; Xia Y
    ChemSusChem; 2014 May; 7(5):1476-83. PubMed ID: 24644079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
    Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM
    J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-controlled synthesis of Pt nanocrystals: the role of metal carbonyls.
    Kang Y; Pyo JB; Ye X; Diaz RE; Gordon TR; Stach EA; Murray CB
    ACS Nano; 2013 Jan; 7(1):645-53. PubMed ID: 23211025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-nanoparticle-supported core--shell polymer nanospheres with unexpected water stability and facile further modification.
    Yuan C; Xu Y; Luo W; Zeng B; Qiu W; Liu J; Huang H; Dai L
    Nanotechnology; 2012 May; 23(17):175301. PubMed ID: 22481383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.
    Cheng D; Yuan S; Ferrando R
    J Phys Condens Matter; 2013 Sep; 25(35):355008. PubMed ID: 23913101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas.
    Salciccioli M; Vlachos DG
    J Phys Chem A; 2012 May; 116(18):4621-8. PubMed ID: 22483365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation.
    Duan H; Wang D; Kou Y; Li Y
    Chem Commun (Camb); 2013 Jan; 49(3):303-5. PubMed ID: 23183720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.