BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 22519893)

  • 1. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells.
    Mamot C; Ritschard R; Wicki A; Küng W; Schuller J; Herrmann R; Rochlitz C
    J Drug Target; 2012 Jun; 20(5):422-32. PubMed ID: 22519893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells.
    Mamot C; Drummond DC; Greiser U; Hong K; Kirpotin DB; Marks JD; Park JW
    Cancer Res; 2003 Jun; 63(12):3154-61. PubMed ID: 12810643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological evaluation of a novel doxorubicin-peptide conjugate for targeted delivery to EGF receptor-overexpressing tumor cells.
    Ai S; Duan J; Liu X; Bock S; Tian Y; Huang Z
    Mol Pharm; 2011 Apr; 8(2):375-86. PubMed ID: 21241067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo.
    Mamot C; Drummond DC; Noble CO; Kallab V; Guo Z; Hong K; Kirpotin DB; Park JW
    Cancer Res; 2005 Dec; 65(24):11631-8. PubMed ID: 16357174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery.
    Park JW; Hong K; Kirpotin DB; Colbern G; Shalaby R; Baselga J; Shao Y; Nielsen UB; Marks JD; Moore D; Papahadjopoulos D; Benz CC
    Clin Cancer Res; 2002 Apr; 8(4):1172-81. PubMed ID: 11948130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil.
    Wu J; Lu Y; Lee A; Pan X; Yang X; Zhao X; Lee RJ
    J Pharm Pharm Sci; 2007; 10(3):350-7. PubMed ID: 17727798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The in vitro cytotoxicity and in vivo toxicity of doxorubicin antiresistant stealth liposomes].
    Wang JC; Liu XY; Lü WL; Lee HS; Goh BC; Zhang Q
    Yao Xue Xue Bao; 2005 May; 40(5):475-80. PubMed ID: 16220797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of doxorubicin resistance in multidrug resistant melanoma cells in vitro and in vivo by dipyridamole.
    Desai PB; Duan J; Sridhar R; Damle BD
    Methods Find Exp Clin Pharmacol; 1997 May; 19(4):231-9. PubMed ID: 9228648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump.
    Goren D; Horowitz AT; Tzemach D; Tarshish M; Zalipsky S; Gabizon A
    Clin Cancer Res; 2000 May; 6(5):1949-57. PubMed ID: 10815920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy.
    Paliwal SR; Paliwal R; Pal HC; Saxena AK; Sharma PR; Gupta PN; Agrawal GP; Vyas SP
    Mol Pharm; 2012 Jan; 9(1):176-86. PubMed ID: 22091702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor targeting using anti-her2 immunoliposomes.
    Park JW; Kirpotin DB; Hong K; Shalaby R; Shao Y; Nielsen UB; Marks JD; Papahadjopoulos D; Benz CC
    J Control Release; 2001 Jul; 74(1-3):95-113. PubMed ID: 11489487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin.
    Xiong XB; Ma Z; Lai R; Lavasanifar A
    Biomaterials; 2010 Feb; 31(4):757-68. PubMed ID: 19818492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted multidrug delivery system to overcome chemoresistance in breast cancer.
    Tang Y; Soroush F; Tong Z; Kiani MF; Wang B
    Int J Nanomedicine; 2017; 12():671-681. PubMed ID: 28176940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.
    Wu Y; Zhang Y; Zhang W; Sun C; Wu J; Tang J
    Colloids Surf B Biointerfaces; 2016 Feb; 138():60-9. PubMed ID: 26655793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells.
    Wang YC; Wang F; Sun TM; Wang J
    Bioconjug Chem; 2011 Oct; 22(10):1939-45. PubMed ID: 21866903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells.
    Kobayashi T; Ishida T; Okada Y; Ise S; Harashima H; Kiwada H
    Int J Pharm; 2007 Feb; 329(1-2):94-102. PubMed ID: 16997518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of cancer multidrug resistance by green tea polyphenols.
    Mei Y; Qian F; Wei D; Liu J
    J Pharm Pharmacol; 2004 Oct; 56(10):1307-14. PubMed ID: 15482646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor.
    Lee ES; Na K; Bae YH
    J Control Release; 2005 Mar; 103(2):405-18. PubMed ID: 15763623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of MDR1 phosphorothioate antisense oligodeoxynucleotides in multidrug-resistant human tumor cell lines and xenografts.
    Ramachandran C; Wellham LL
    Anticancer Res; 2003; 23(3B):2681-90. PubMed ID: 12894558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.
    Zhong Y; Zhang J; Cheng R; Deng C; Meng F; Xie F; Zhong Z
    J Control Release; 2015 May; 205():144-54. PubMed ID: 25596560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.