These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22519951)

  • 1. One-year evolution of ulnar somatosensory potentials after trauma in 365 tetraplegic patients: early prediction of potential upper limb function.
    Kuhn F; Halder P; Spiess MR; Schubert M;
    J Neurotrauma; 2012 Jul; 29(10):1829-37. PubMed ID: 22519951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper-limb somatosensory evoked potential monitoring in lumbosacral spine surgery: a prognostic marker for position-related ulnar nerve injury.
    Chung I; Glow JA; Dimopoulos V; Walid MS; Smisson HF; Johnston KW; Robinson JS; Grigorian AA
    Spine J; 2009 Apr; 9(4):287-95. PubMed ID: 18684675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Neurological diagnosis and prognosis: significance of neurophysiological findings in traumatic spinal cord lesions].
    Curt A
    Schweiz Med Wochenschr; 2000 Jun; 130(22):801-10. PubMed ID: 10893751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traumatic cervical spinal cord injury: relation between somatosensory evoked potentials, neurological deficit, and hand function.
    Curt A; Dietz V
    Arch Phys Med Rehabil; 1996 Jan; 77(1):48-53. PubMed ID: 8554473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial.
    Shapiro S; Borgens R; Pascuzzi R; Roos K; Groff M; Purvines S; Rodgers RB; Hagy S; Nelson P
    J Neurosurg Spine; 2005 Jan; 2(1):3-10. PubMed ID: 15658119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials.
    Spiess M; Schubert M; Kliesch U; ; Halder P
    Clin Neurophysiol; 2008 May; 119(5):1051-61. PubMed ID: 18343719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Median-evoked somatosensory potentials in severe brain injury: does initial loss of cortical potentials exclude recovery?
    Schorl M; Valerius-Kukula SJ; Kemmer TP
    Clin Neurol Neurosurg; 2014 Aug; 123():25-33. PubMed ID: 25012007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome.
    Curt A; Dietz V
    Arch Phys Med Rehabil; 1997 Jan; 78(1):39-43. PubMed ID: 9014955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials.
    Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD
    Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal factors for position-related SSEP changes in spinal surgery.
    Silverstein JW; Matthews E; Mermelstein LE; DeWal H
    Eur Spine J; 2016 Oct; 25(10):3208-3213. PubMed ID: 27209584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative hand movements in tetraplegic spinal cord injury patients: Preserved neural coupling.
    Scharfenberger TM; Schrafl-Altermatt M; Dietz V
    Clin Neurophysiol; 2018 Oct; 129(10):2059-2064. PubMed ID: 30077074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study.
    Osuagwu BC; Wallace L; Fraser M; Vuckovic A
    J Neural Eng; 2016 Dec; 13(6):065002. PubMed ID: 27739405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatosensory evoked potentials and neurological grades as predictors of outcome in acute spinal cord injury.
    Li C; Houlden DA; Rowed DW
    J Neurosurg; 1990 Apr; 72(4):600-9. PubMed ID: 2319320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.
    Beekhuizen KS; Field-Fote EC
    Arch Phys Med Rehabil; 2008 Apr; 89(4):602-8. PubMed ID: 18373988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects from lumbar nerve root transection in rats on spinal somatosensory and motor-evoked potentials.
    Jou IM
    Spine (Phila Pa 1976); 2004 Jan; 29(2):147-55. PubMed ID: 14722405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prognosis of traumatic spinal cord lesions. Significance of clinical and electrophysiological findings].
    Curt A; Dietz V
    Nervenarzt; 1997 Jun; 68(6):485-95. PubMed ID: 9312682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dermatomal somatosensory evoked potentials and electrical perception thresholds during recovery from cervical spinal cord injury.
    Kramer JK; Taylor P; Steeves JD; Curt A
    Neurorehabil Neural Repair; 2010 May; 24(4):309-17. PubMed ID: 19841437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiological monitoring of spinal cord function during instrumented anterior cervical fusion.
    Bose B; Sestokas AK; Schwartz DM
    Spine J; 2004; 4(2):202-7. PubMed ID: 15016399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative neurophysiologic spinal cord monitoring in thoracolumbar burst fractures.
    Castellon AT; Meves R; Avanzi O
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2662-8. PubMed ID: 19910769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serial recording of somatosensory and myoelectric motor evoked potentials: role in assessing functional recovery after graded spinal cord injury in the rat.
    Nashmi R; Imamura H; Tator CH; Fehlings MG
    J Neurotrauma; 1997 Mar; 14(3):151-9. PubMed ID: 9104932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.