These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
482 related articles for article (PubMed ID: 22519976)
1. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors. Olavarría K; Valdés D; Cabrera R FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. Woodyer R; Zhao H; van der Donk WA FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753 [TBL] [Abstract][Full Text] [Related]
3. Glucose-6-phosphate dehydrogenase from a tetracycline producing strain of Streptomyces aureofaciens: some properties and regulatory aspects of the enzyme. Neuzil J; Novotná J; Erban V; Bĕhal V; Hostálek Z Biochem Int; 1988 Jul; 17(1):187-96. PubMed ID: 3142475 [TBL] [Abstract][Full Text] [Related]
4. [Stability of glucose 6-phosphate dehydrogenase complexed with its substrate and/or cofactor in aqueous and micellar environment]. Puchkaev AV; Vlasov AP; Metelitsa DI Prikl Biokhim Mikrobiol; 2002; 38(1):44-52. PubMed ID: 11852566 [TBL] [Abstract][Full Text] [Related]
5. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans. Tonouchi N; Sugiyama M; Yokozeki K Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146 [TBL] [Abstract][Full Text] [Related]
6. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies. Fuentealba M; Muñoz R; Maturana P; Krapp A; Cabrera R PLoS One; 2016; 11(3):e0152403. PubMed ID: 27010804 [TBL] [Abstract][Full Text] [Related]
7. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase. Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101 [TBL] [Abstract][Full Text] [Related]
8. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Rauch B; Pahlke J; Schweiger P; Deppenmeier U Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631 [TBL] [Abstract][Full Text] [Related]
9. [Possible mechanisms of regulating glucose-6-phosphate dehydrogenase activity by an excess of substrate and coenzyme]. Rogozhin VV Bioorg Khim; 1996 Aug; 22(8):575-9. PubMed ID: 8984999 [TBL] [Abstract][Full Text] [Related]
10. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase. Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity. Anderson BM; Anderson CD Arch Biochem Biophys; 1995 Aug; 321(1):94-100. PubMed ID: 7639541 [TBL] [Abstract][Full Text] [Related]
12. Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Verdon CP; Burton BA; Prior RL Anal Biochem; 1995 Jan; 224(2):502-8. PubMed ID: 7733451 [TBL] [Abstract][Full Text] [Related]
13. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
15. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Lee WH; Chin YW; Han NS; Kim MD; Seo JH Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115 [TBL] [Abstract][Full Text] [Related]
16. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. Armingol E; Tobar E; Cabrera R PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222 [TBL] [Abstract][Full Text] [Related]
17. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Kotaka M; Gover S; Vandeputte-Rutten L; Au SW; Lam VM; Adams MJ Acta Crystallogr D Biol Crystallogr; 2005 May; 61(Pt 5):495-504. PubMed ID: 15858258 [TBL] [Abstract][Full Text] [Related]
18. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates. Nivière V; Vanoni MA; Zanetti G; Fontecave M Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311 [TBL] [Abstract][Full Text] [Related]