These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22520212)

  • 1. Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries.
    Moebius F; Or D
    J Colloid Interface Sci; 2012 Jul; 377(1):406-15. PubMed ID: 22520212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial velocities and capillary pressure gradients during Haines jumps.
    Armstrong RT; Berg S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043010. PubMed ID: 24229279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing viscous fingering in structured porous media.
    Rabbani HS; Or D; Liu Y; Lai CY; Lu NB; Datta SS; Stone HA; Shokri N
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4833-4838. PubMed ID: 29686067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A level set method for determining critical curvatures for drainage and imbibition.
    Prodanović M; Bryant SL
    J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.
    Chang C; Ju Y; Xie H; Zhou Q; Gao F
    Sci Rep; 2017 Jul; 7(1):4570. PubMed ID: 28676655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography.
    Shahraeeni E; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016317. PubMed ID: 22400668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time 3D imaging of Haines jumps in porous media flow.
    Berg S; Ott H; Klapp SA; Schwing A; Neiteler R; Brussee N; Makurat A; Leu L; Enzmann F; Schwarz JO; Kersten M; Irvine S; Stampanoni M
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3755-9. PubMed ID: 23431151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
    Armstrong RT; McClure JE; Berrill MA; Rücker M; Schlüter S; Berg S
    Phys Rev E; 2016 Oct; 94(4-1):043113. PubMed ID: 27841482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.
    Yamabe H; Tsuji T; Liang Y; Matsuoka T
    Environ Sci Technol; 2015 Jan; 49(1):537-43. PubMed ID: 25427299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant Variations in Porous Media Localize Capillary Instabilities during Haines Jumps.
    Edery Y; Berg S; Weitz D
    Phys Rev Lett; 2018 Jan; 120(2):028005. PubMed ID: 29376702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.
    Chau JF; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056304. PubMed ID: 17279990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition.
    Chang D; Ioannidis MA
    J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface.
    Freer EM; Yim KS; Fuller GG; Radke CJ
    Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport.
    Gupta A; Chauhan A; Kopelevich DI
    J Chem Phys; 2008 Jun; 128(23):234709. PubMed ID: 18570521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pore volume-transmissivity correlation on transport phenomena.
    Lunati I; Kinzelbach W; Sørensen I
    J Contam Hydrol; 2003 Dec; 67(1-4):195-217. PubMed ID: 14607477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-Scale Modeling of Fluid-Fluid Interfacial Area in Variably Saturated Porous Media Containing Microscale Surface Roughness.
    Jiang H; Guo B; Brusseau ML
    Water Resour Res; 2020 Jan; 56(1):. PubMed ID: 33408424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of the immiscible displacement of shear-thinning fluids in pore networks.
    Tsakiroglou CD; Theodoropoulou M; Karoutsos V; Papanicolaou D; Sygouni V
    J Colloid Interface Sci; 2003 Nov; 267(1):217-32. PubMed ID: 14554188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.