BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 22520296)

  • 1. Characterization and neural differentiation of mouse embryonic and induced pluripotent stem cells on cadherin-based substrata.
    Haque A; Yue XS; Motazedian A; Tagawa Y; Akaike T
    Biomaterials; 2012 Jul; 33(20):5094-106. PubMed ID: 22520296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesive forces in embryonic stem cell cultures.
    Blancas AA; Chen CS; Stolberg S; McCloskey KE
    Cell Adh Migr; 2011; 5(6):472-9. PubMed ID: 22274712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D.
    Yang F; Cho SW; Son SM; Hudson SP; Bogatyrev S; Keung L; Kohane DS; Langer R; Anderson DG
    Biomacromolecules; 2010 Aug; 11(8):1909-14. PubMed ID: 20614932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System.
    Low K; Wong LY; Maldonado M; Manjunath C; Horner CB; Perez M; Myung NV; Nam J
    Stem Cell Reports; 2017 May; 8(5):1329-1339. PubMed ID: 28457888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of artificial E-cadherin matrix-induced embryonic stem cell scattering on paxillin and RhoA activation via α-catenin.
    Mattias L; Haque A; Adnan N; Akaike T
    Biomaterials; 2014 Feb; 35(6):1797-806. PubMed ID: 24321709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Differentiation of Induced Pluripotent Stem Cells for a Xenogeneic Material-Free 3D Neurological Disease Model Neurulation from Pluripotent Cells Using a Human Hydrogel.
    Valerio LSA; Carrick FR; Bedoya L; Sreerama S; Sugaya K
    Curr Issues Mol Biol; 2023 May; 45(6):4574-4588. PubMed ID: 37367039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct visualization of the extracellular binding structure of E-cadherins in liquid.
    Shibata-Seki T; Nagaoka M; Goto M; Kobatake E; Akaike T
    Sci Rep; 2020 Oct; 10(1):17044. PubMed ID: 33046720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy.
    Al Abbar A; Ngai SC; Nograles N; Alhaji SY; Abdullah S
    Biores Open Access; 2020; 9(1):121-136. PubMed ID: 32368414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated neural differentiation of mouse embryonic stem cells on aligned GYIGSR-functionalized nanofibers.
    Silantyeva EA; Nasir W; Carpenter J; Manahan O; Becker ML; Willits RK
    Acta Biomater; 2018 Jul; 75():129-139. PubMed ID: 29879551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detachment of Chain-Forming Neuroblasts by Fyn-Mediated Control of cell-cell Adhesion in the Postnatal Brain.
    Fujikake K; Sawada M; Hikita T; Seto Y; Kaneko N; Herranz-Pérez V; Dohi N; Homma N; Osaga S; Yanagawa Y; Akaike T; García-Verdugo JM; Hattori M; Sobue K; Sawamoto K
    J Neurosci; 2018 May; 38(19):4598-4609. PubMed ID: 29661967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine.
    Foyt DA; Norman MDA; Yu TTL; Gentleman E
    Adv Healthc Mater; 2018 Apr; 7(8):e1700939. PubMed ID: 29316363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual repression of endocytic players by ESCC microRNAs and the Polycomb complex regulates mouse embryonic stem cell pluripotency.
    Mote RD; Mahajan G; Padmanabhan A; Ambati R; Subramanyam D
    Sci Rep; 2017 Dec; 7(1):17572. PubMed ID: 29242593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane translocation of t-SNARE protein syntaxin-4 abrogates ground-state pluripotency in mouse embryonic stem cells.
    Hagiwara-Chatani N; Shirai K; Kido T; Horigome T; Yasue A; Adachi N; Hirai Y
    Sci Rep; 2017 Jan; 7():39868. PubMed ID: 28057922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Analysis of Stromal Cells-Induced Neural Differentiation of Mouse Embryonic Stem Cells.
    Joshi R; Buchanan JC; Paruchuri S; Morris N; Tavana H
    PLoS One; 2016; 11(11):e0166316. PubMed ID: 27832161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors.
    Haque A; Adnan N; Motazedian A; Akter F; Hossain S; Kutsuzawa K; Nag K; Kobatake E; Akaike T
    PLoS One; 2015; 10(8):e0135170. PubMed ID: 26244942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development.
    Miyamoto Y; Sakane F; Hashimoto K
    Cell Adh Migr; 2015; 9(3):183-92. PubMed ID: 25869655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced pluripotent stem cells for regenerative medicine.
    Hirschi KK; Li S; Roy K
    Annu Rev Biomed Eng; 2014 Jul; 16():277-94. PubMed ID: 24905879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural differentiation from pluripotent stem cells: The role of natural and synthetic extracellular matrix.
    Li Y; Liu M; Yan Y; Yang ST
    World J Stem Cells; 2014 Jan; 6(1):11-23. PubMed ID: 24567784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-methylcholanthrene induces neurotoxicity in developing neurons derived from human CD34+Thy1+ stem cells by activation of aryl hydrocarbon receptor.
    Singh AK; Kashyap MP; Kumar V; Tripathi VK; Yadav DK; Khan F; Jahan S; Khanna VK; Yadav S; Pant AB
    Neuromolecular Med; 2013 Sep; 15(3):570-92. PubMed ID: 23846855
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.