These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22520396)

  • 41. Validation of a numerical model of skeletal muscle compression with MR tagging: a contribution to pressure ulcer research.
    Ceelen KK; Stekelenburg A; Mulders JL; Strijkers GJ; Baaijens FP; Nicolay K; Oomens CW
    J Biomech Eng; 2008 Dec; 130(6):061015. PubMed ID: 19045544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep tissue injury from a bioengineering point of view.
    Gefen A
    Ostomy Wound Manage; 2009 Apr; 55(4):26-36. PubMed ID: 19387094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reswick and Rogers pressure-time curve for pressure ulcer risk. Part 1.
    Gefen A
    Nurs Stand; 2009 Jul 15-21; 23(45):64, 66, 68 passim. PubMed ID: 19678520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of a new sitting concept designed for prevention of pressure ulcer on the buttock using finite element analysis.
    Lim D; Lin F; Hendrix RW; Moran B; Fasanati C; Makhsous M
    Med Biol Eng Comput; 2007 Nov; 45(11):1079-84. PubMed ID: 17922158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads.
    Cloots RJ; van Dommelen JA; Kleiven S; Geers MG
    Biomech Model Mechanobiol; 2013 Jan; 12(1):137-50. PubMed ID: 22434184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pressure ulcer tissue histology: an appraisal of current knowledge.
    Edsberg LE
    Ostomy Wound Manage; 2007 Oct; 53(10):40-9. PubMed ID: 17978414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Device-related pressure ulcers from a biomechanical perspective.
    Levy A; Kopplin K; Gefen A
    J Tissue Viability; 2017 Feb; 26(1):57-68. PubMed ID: 26927980
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioengineering models of deep tissue injury.
    Gefen A
    Adv Skin Wound Care; 2008 Jan; 21(1):30-6. PubMed ID: 18156827
    [No Abstract]   [Full Text] [Related]  

  • 49. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Congruency effects on load bearing in diarthrodial joints.
    Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
    Menzel A; Harrysson M; Ristinmaa M
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):505-24. PubMed ID: 19230147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mechanism of soft tissue damage: It is all in the rub.
    Curran SA; Carlson JM
    Prosthet Orthot Int; 2015 Feb; 39(1):82-4. PubMed ID: 25614504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations.
    Shilo M; Gefen A
    Comput Methods Biomech Biomed Engin; 2012; 15(1):59-71. PubMed ID: 21181574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The contribution of a directional preference of stiffness to the efficacy of prophylactic sacral dressings in protecting healthy and diabetic tissues from pressure injury: computational modelling studies.
    Levy A; Schwartz D; Gefen A
    Int Wound J; 2017 Dec; 14(6):1370-1377. PubMed ID: 28960851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The biomechanics of heel ulcers.
    Gefen A
    J Tissue Viability; 2010 Nov; 19(4):124-31. PubMed ID: 20584612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: a poroelastic finite element model study.
    Natarajan RN; Lavender SA; An HA; Andersson GB
    Spine (Phila Pa 1976); 2008 Aug; 33(18):1958-65. PubMed ID: 18708928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feasibility of sub-dermal soft tissue deformation assessment using B-mode ultrasound for pressure ulcer prevention.
    Doridam J; Macron A; Vergari C; Verney A; Rohan PY; Pillet H
    J Tissue Viability; 2018 Nov; 27(4):238-243. PubMed ID: 30195464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An integrated experimental-computational study of the microclimate under dressings applied to intact weight-bearing skin.
    Schwartz D; Gefen A
    Int Wound J; 2020 Jun; 17(3):562-577. PubMed ID: 31991530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.