These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 22520750)
1. Insights into quinaldic acid moiety formation in thiostrepton biosynthesis facilitating fluorinated thiopeptide generation. Duan L; Wang S; Liao R; Liu W Chem Biol; 2012 Apr; 19(4):443-8. PubMed ID: 22520750 [TBL] [Abstract][Full Text] [Related]
2. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Zheng Q; Wang S; Duan P; Liao R; Chen D; Liu W Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14318-14323. PubMed ID: 27911800 [TBL] [Abstract][Full Text] [Related]
3. Processing 2-Methyl-l-Tryptophan through Tandem Transamination and Selective Oxygenation Initiates Indole Ring Expansion in the Biosynthesis of Thiostrepton. Lin Z; Ji J; Zhou S; Zhang F; Wu J; Guo Y; Liu W J Am Chem Soc; 2017 Sep; 139(35):12105-12108. PubMed ID: 28820583 [TBL] [Abstract][Full Text] [Related]
4. Thiostrepton biosynthesis: prototype for a new family of bacteriocins. Kelly WL; Pan L; Li C J Am Chem Soc; 2009 Apr; 131(12):4327-34. PubMed ID: 19265401 [TBL] [Abstract][Full Text] [Related]
5. Precursor-Directed Mutational Biosynthesis Facilitates the Functional Assignment of Two Cytochromes P450 in Thiostrepton Biosynthesis. Zheng Q; Wang S; Liao R; Liu W ACS Chem Biol; 2016 Oct; 11(10):2673-2678. PubMed ID: 27560135 [TBL] [Abstract][Full Text] [Related]
6. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue. Zhang F; Li C; Kelly WL ACS Chem Biol; 2016 Feb; 11(2):415-24. PubMed ID: 26630475 [TBL] [Abstract][Full Text] [Related]
7. Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Li C; Zhang F; Kelly WL Mol Biosyst; 2011 Jan; 7(1):82-90. PubMed ID: 21107477 [TBL] [Abstract][Full Text] [Related]
8. Studies on the biosynthesis of thiostrepton: 4-(1-hydroxyethyl)quinoline-2-carboxylate as a free intermediate on the pathway to the quinaldic acid moiety. Priestley ND; Smith TM; Shipley PR; Floss HG Bioorg Med Chem; 1996 Jul; 4(7):1135-47. PubMed ID: 8831986 [TBL] [Abstract][Full Text] [Related]
9. Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin-Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Lin Z; Xue Y; Liang XW; Wang J; Lin S; Tao J; You SL; Liu W Angew Chem Int Ed Engl; 2021 Apr; 60(15):8401-8405. PubMed ID: 33496012 [TBL] [Abstract][Full Text] [Related]
10. In vivo production of thiopeptide variants. Zhang F; Kelly WL Methods Enzymol; 2012; 516():3-24. PubMed ID: 23034221 [TBL] [Abstract][Full Text] [Related]
11. Efficient methylation of C2 in l-tryptophan by the cobalamin-dependent radical Blaszczyk AJ; Wang B; Silakov A; Ho JV; Booker SJ J Biol Chem; 2017 Sep; 292(37):15456-15467. PubMed ID: 28747433 [TBL] [Abstract][Full Text] [Related]
12. Thiostrepton maturation involving a deesterification-amidation way to process the C-terminally methylated peptide backbone. Liao R; Liu W J Am Chem Soc; 2011 Mar; 133(9):2852-5. PubMed ID: 21323347 [TBL] [Abstract][Full Text] [Related]
13. Saturation mutagenesis of TsrA Ala4 unveils a highly mutable residue of thiostrepton A. Zhang F; Kelly WL ACS Chem Biol; 2015 Apr; 10(4):998-1009. PubMed ID: 25572285 [TBL] [Abstract][Full Text] [Related]
14. Thiopeptide Antibiotics Exhibit a Dual Mode of Action against Intracellular Pathogens by Affecting Both Host and Microbe. Zheng Q; Wang Q; Wang S; Wu J; Gao Q; Liu W Chem Biol; 2015 Aug; 22(8):1002-7. PubMed ID: 26211364 [TBL] [Abstract][Full Text] [Related]
15. Formation of 2-methyltryptophan in the biosynthesis of thiostrepton: isolation of S-adenosylmethionine:tryptophan 2-methyltransferase. Frenzel T; Zhou P; Floss HG Arch Biochem Biophys; 1990 Apr; 278(1):35-40. PubMed ID: 2321967 [TBL] [Abstract][Full Text] [Related]
16. Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. Yu Y; Duan L; Zhang Q; Liao R; Ding Y; Pan H; Wendt-Pienkowski E; Tang G; Shen B; Liu W ACS Chem Biol; 2009 Oct; 4(10):855-64. PubMed ID: 19678698 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation. Olano C; Moss SJ; Braña AF; Sheridan RM; Math V; Weston AJ; Méndez C; Leadlay PF; Wilkinson B; Salas JA Mol Microbiol; 2004 Jun; 52(6):1745-56. PubMed ID: 15186422 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of the Thiopeptins and Identification of an F Ichikawa H; Bashiri G; Kelly WL J Am Chem Soc; 2018 Aug; 140(34):10749-10756. PubMed ID: 30118217 [TBL] [Abstract][Full Text] [Related]
19. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101 [TBL] [Abstract][Full Text] [Related]
20. Molecular interactions between thiostrepton and the TipAS protein from Streptomyces lividans. Myers CL; Harris J; Yeung JC; Honek JF Chembiochem; 2014 Mar; 15(5):681-7. PubMed ID: 24616128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]