BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22520924)

  • 1. Arsenic and chromium speciation in an urban contaminated soil.
    Landrot G; Tappero R; Webb SM; Sparks DL
    Chemosphere; 2012 Aug; 88(10):1196-201. PubMed ID: 22520924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil.
    Kumpiene J; Ragnvaldsson D; Lövgren L; Tesfalidet S; Gustavsson B; Lättström A; Leffler P; Maurice C
    Chemosphere; 2009 Jan; 74(2):206-15. PubMed ID: 18990425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.
    Kumpiene J; Lagerkvist A; Maurice C
    Waste Manag; 2008; 28(1):215-25. PubMed ID: 17320367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).
    Elzinga EJ; Cirmo A
    J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium speciation in mildly heated Cr(VI)-doped latosol soil.
    Wei YL; Hsieh HF; Peng YS; Chen KW; Lin CY; Wang HP
    J Synchrotron Radiat; 2010 Mar; 17(2):173-8. PubMed ID: 20157268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution and speciation of arsenic in peat studied with Microfocused X-ray fluorescence spectrometry and X-ray absorption spectroscopy.
    Langner P; Mikutta C; Suess E; Marcus MA; Kretzschmar R
    Environ Sci Technol; 2013 Sep; 47(17):9706-14. PubMed ID: 23889036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.
    Weber FA; Hofacker AF; Voegelin A; Kretzschmar R
    Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium transport in an acidic waste contaminated subsurface medium: the role of reduction.
    Qafoku NP; Evan Dresel P; Ilton E; McKinley JP; Resch CT
    Chemosphere; 2010 Dec; 81(11):1492-500. PubMed ID: 20875666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.
    Fan JX; Wang YJ; Liu C; Wang LH; Yang K; Zhou DM; Li W; Sparks DL
    J Hazard Mater; 2014 Aug; 279():212-9. PubMed ID: 25064258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-iron biosolids compost-induced changes in lead and arsenic speciation and bioaccessibility in co-contaminated soils.
    Brown SL; Clausen I; Chappell MA; Scheckel KG; Newville M; Hettiarachchi GM
    J Environ Qual; 2012; 41(5):1612-22. PubMed ID: 23099953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite.
    Kiser JR; Manning BA
    J Hazard Mater; 2010 Feb; 174(1-3):167-74. PubMed ID: 19796874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined use of a transformed red mud reactive barrier and electrokinetics for remediation of Cr/As contaminated soil.
    Cappai G; De Gioannis G; Muntoni A; Spiga D; Zijlstra JJ
    Chemosphere; 2012 Jan; 86(4):400-8. PubMed ID: 22119416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil.
    Kumpiene J; Castillo Montesinos I; Lagerkvist A; Maurice C
    Chemosphere; 2007 Feb; 67(2):410-7. PubMed ID: 17166546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility.
    Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL
    Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaching behavior of Cr(III) in stabilized/solidified soil.
    Jing C; Liu S; Korfiatis GP; Meng X
    Chemosphere; 2006 Jun; 64(3):379-85. PubMed ID: 16466774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of standards and biological samples containing mixed oxidation states of chromium(III) and chromium(VI).
    Parsons JG; Dokken K; Peralta-Videa JR; Romero-Gonzalez J; Gardea-Torresdey JL
    Appl Spectrosc; 2007 Mar; 61(3):338-45. PubMed ID: 17389076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT
    Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.