BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22520924)

  • 21. Changes in arsenic speciation through a contaminated soil profile: a XAS based study.
    Cancès B; Juillot F; Morin G; Laperche V; Polya D; Vaughan DJ; Hazemann JL; Proux O; Brown GE; Calas G
    Sci Total Environ; 2008 Jul; 397(1-3):178-89. PubMed ID: 18406447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elemental sulfur amendment decreases bio-available Cr-VI in soils impacted by leather tanneries.
    Shi J; Chen H; Arocena JM; Whitcombe T; Thring RW; Memiaghe JN
    Environ Pollut; 2016 May; 212():57-64. PubMed ID: 26840517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment.
    Nielsen SS; Petersen LR; Kjeldsen P; Jakobsen R
    Chemosphere; 2011 Jul; 84(4):383-9. PubMed ID: 21529888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia.
    Kinsela AS; Collins RN; Waite TD
    Chemosphere; 2011 Feb; 82(6):879-87. PubMed ID: 21094969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China.
    Dong D; Zhao X; Hua X; Liu J; Gao M
    J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.
    Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF
    Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and thermal stability of toxic chromium(VI) species doped onto TiO(2) powders through heat treatment.
    Lin SH; Chen CN; Juang RS
    J Environ Manage; 2009 Apr; 90(5):1950-5. PubMed ID: 19157686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaching of arsenic, copper and chromium from thermally treated soil.
    Kumpiene J; Nordmark D; Hamberg R; Carabante I; Simanavičienė R; Aksamitauskas VČ
    J Environ Manage; 2016 Dec; 183(Pt 3):460-466. PubMed ID: 27612616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution.
    Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG
    Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.
    Singh R; Misra V; Singh RP
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.
    Schwer Iii DR; McNear DH
    J Environ Qual; 2011; 40(4):1172-81. PubMed ID: 21712587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary.
    Burke IT; Mayes WM; Peacock CL; Brown AP; Jarvis AP; Gruiz K
    Environ Sci Technol; 2012 Mar; 46(6):3085-92. PubMed ID: 22324637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.
    Hori M; Shozugawa K; Matsuo M
    J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of the human health risks posed by exposure to chromium-contaminated soils.
    Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ
    J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures.
    Milačič R; Zuliani T; Ščančar J
    Sci Total Environ; 2012 Jun; 426():359-65. PubMed ID: 22542238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).
    Hedberg YS; Lidén C; Odnevall Wallinder I
    J Hazard Mater; 2014 Sep; 280():654-61. PubMed ID: 25222930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity.
    Viti C; Pace A; Giovannetti L
    Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.